带源项浅水方程的高阶格式研究

被引:9
作者
柏禄海
金生
机构
[1] 大连理工大学海岸和近海工程国家重点实验室
关键词
浅水方程; 源项; Roe格式; MUSCL; 有限体积法;
D O I
10.16076/j.cnki.cjhd.2009.01.014
中图分类号
TV131.3 [水流];
学科分类号
0801 ; 080103 ; 080104 ; 081502 ;
摘要
该文以Roe格式的近似Riemann解为基础,构造了具有二阶时空精度的MUSCL型格式来模拟非平底、变河宽浅水流动,并保证了计算结果的和谐性。通过几个经典算例的计算,比较了不同重构变量对不同流态的影响,验证了本文构造的高阶方法具有和谐、通用性好、分辨率高等优点。
引用
收藏
页码:22 / 28
页数:7
相关论文
共 10 条
[1]  
Towards the Ultimate Conservative Difference Scheme.V. A Second-Order Sequel to Godunov’s Method. B. Van Leer. Journal of Computational Physics . 1979
[2]  
On numerical treatment of the source terms in the shallow water equations. Garcia-Navarro P,Vazquez-Cendon M E. Computers and Fluids . 2000
[3]  
The surface gradient method for the treatment of source terms in the shallow-water equations. Zhou,J.G.,Causon,D.M.,Mingham,C.G.,Ingram,D.M. Journal of Computational Physics . 2001
[4]  
Finite volume model for nonlevel basin irrigation. Scott F Bradfordl,and Nikolaos D Katopodes. Journal of Irrigation and Drainage Engineering . 2001
[5]   一维浅水方程的高精度GODUNOV格式 [J].
耿艳芬 ;
王志力 ;
金生 .
水动力学研究与进展(A辑), 2005, (04) :507-512
[6]  
Flux difference splitting and the balancing of source terms and flux gradients. HUBBARD M E and GARCIA-NAVARRO P. Journal of Computational Physics . 2000
[7]   带源项浅水方程的通量平衡离散 [J].
王志力 ;
耿艳芬 ;
金生 .
水科学进展, 2005, (03) :373-379
[8]  
Finite-volume model for shallow-water flooding of arbitrary topography. Bradford,F,Sanders,BF. Journal of Hydraulic Engineering ASCE . 2002
[9]  
Efficient implementation of non-oscillatory schemes the computation of free-surface flows. MARINKO NUJIC. Jouranl of Hydraulic Research . 1995
[10]  
A high-resolution godunov-type scheme in finite volumes for the 2D shallowvater equations. Francisco Alcrudo,Pilar Garcia-Navarro. International Journal for Numerical Methods in Fluids . 1993