基于LSTM的短时交通流预测研究

被引:16
作者
曹博
高茂庭
机构
[1] 上海海事大学信息工程学院
关键词
智能交通; 交通流预测; 长短期记忆(LSTM); 时间序列; 深度学习;
D O I
暂无
中图分类号
U491.14 [];
学科分类号
摘要
针对基于时间序列的交通流预测模型中历史输入数据的时间间隔需预定义的问题,在深度学习理论框架下,构建基于LSTM的高速公路短时交通流预测模型。LSTM模型能自动确定输入数据的最优时间间隔,用基于TensorFlow的Keras完成LSTM的逐层构建,再实现模型的本地保存并根据预测精度进行自适应更新。在公开数据集上的对比实验表明,LSTM预测算法有效提高交通流预测的精度。
引用
收藏
页码:3 / 7
页数:5
相关论文
共 11 条
[1]  
基于递归神经网络的生物医学命名实体识别.[D].金留可.大连理工大学.2016, 03
[2]  
交通流理论.[M].邵春福; 魏丽英; 贾斌; 编著.电子工业出版社.2012,
[3]  
A Hidden Markov Model for short term prediction of traffic conditions on freeways.[J].Yan Qi;Sherif Ishak.Transportation Research Part C.2014,
[4]  
New Bayesian combination method for short-term traffic flow forecasting.[J].Jian Wang;Wei Deng;Yuntao Guo.Transportation Research Part C.2014,
[5]   Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning [J].
Huang, Wenhao ;
Song, Guojie ;
Hong, Haikun ;
Xie, Kunqing .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (05) :2191-2201
[6]  
The retrieval of intra-day trend and its influence on traffic prediction.[J].Chenyi Chen;Yin Wang;Li Li;Jianming Hu;Zuo Zhang.Transportation Research Part C.2011,
[7]  
Statistical methods versus neural networks in transportation research: Differences; similarities and some insights.[J].M.G. Karlaftis;E.I. Vlahogianni.Transportation Research Part C.2010, 3
[8]  
Real-time freeway traffic state estimation based on extended Kalman filter: a general approach.[J].Yibing Wang;Markos Papageorgiou.Transportation Research Part B.2004, 2
[9]   Long short-term memory [J].
Hochreiter, S ;
Schmidhuber, J .
NEURAL COMPUTATION, 1997, 9 (08) :1735-1780
[10]   智能交通系统综述 [J].
赵娜 ;
袁家斌 ;
徐晗 .
计算机科学, 2014, 41 (11) :7-11+45