共 4 条
基于集成学习的半监督情感分类方法研究
被引:14
作者:
高伟
王中卿
李寿山
机构:
[1] 苏州大学计算机科学与技术学院
来源:
关键词:
情感分类;
半监督;
集成学习;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
情感分类旨在对文本所表达的情感色彩类别进行分类的任务。该文研究基于半监督学习的情感分类方法,即在很少规模的标注样本的基础上,借助非标注样本提高情感分类性能。为了提高半监督学习能力,该文提出了一种基于一致性标签的集成方法,用于融合两种主流的半监督情感分类方法:基于随机特征子空间的协同训练方法和标签传播方法。首先,使用这两种半监督学习方法训练出的分类器对未标注样本进行标注;其次,选取出标注一致的未标注样本;最后,使用这些挑选出的样本更新训练模型。实验结果表明,该方法能够有效降低对未标注样本的误标注率,从而获得比任一种半监督学习方法更好的分类效果。
引用
收藏
页码:120 / 126
页数:7
相关论文