非饱和多孔介质有限元分析的基本控制方程与变分原理

被引:6
作者
张洪武
机构
[1] 大连理工大学 工业装备结构分析国家重点实验室工程力学系
[2] 大连
关键词
非饱和多孔介质; 变分原理; 有限元法;
D O I
10.15959/j.cnki.0254-0053.2002.01.008
中图分类号
O302 [力学中的数学方法];
学科分类号
0701 ;
摘要
本文在对问题研究现状进行阐述的基础上较系统地给出了骨架可变形非饱和多孔介质的全耦合分析模型,模型中考虑了孔隙气体、水(油)流动对介质力学性能的影响,多孔介质的饱和度、渗透系数与毛吸压力的关系。由实验给出,所导出的控制方程以固体骨架的位移与孔隙流体压力为基本未知量。由于问题的非自共轭特征,文中构造了非饱和介质动力问题的参数变分形式,并在此基础上给出有限元离散方程。
引用
收藏
页码:50 / 58
页数:9
相关论文
共 8 条
[1]  
General theory of three-dimensional consolidation. Biot M A. Journal of Applied Physics . 1941
[2]  
Static and dynamic behaviour of soils: a rational approach to quantitative solutions, part Ⅱ: semi-saturated problems. Zienkiewicz O C,Xie Y M,Schrefler B A,Ledesma A,Bicanic N. Proceedings of the Royal Society of London . 1990
[3]  
Theories of immiscible and structured mixtures. Bedford A,Drumheller D S. International Journal of Engineering Science . 1983
[4]  
Large strain static and dynamic semisaturated soil behaviour. Meroi E A,Schrefler B A,Zienkiewicz O C. Int Journal for Numerical and Analytical Methods in Geomechanics . 1995
[5]  
Vertical and horizontal land deformation in a desaturing porous medium. Safai N M,Pinder G F. Advances in Water Resources . 1979
[6]  
The elastic coefficients of the theory of consolidation. Biot M A,Willis P G. Journal of Applied Mechanics . 1957
[7]  
Theory of propagation of elastic waves in fluid saturated porous solid. Biot M A. The Journal of The Acoustical Society of America . 1956
[8]  
A two-phase numerical model for prediction of infiltration: applications to a Semi-infinite column. Morel-Seytoux H J,Billica J A. Water Resources Research . 1985