基于GIS和神经网络的森林植被分类(英文)

被引:4
作者
刘旭升 [1 ]
李锋 [2 ]
昝国胜 [1 ]
张晓丽 [3 ]
王军厚 [1 ]
机构
[1] 国家林业局调查规划设计院
[2] 中国科学院生态环境研究中心
[3] 北京林业大学资源与环境学院
关键词
遥感; 分类; 森林; 神经网络;
D O I
暂无
中图分类号
S757 [森林经理学]; S712 [森林物理学];
学科分类号
摘要
本文综述了国际遥感分类研究,使用Landsat7ETM+遥感数据和地理辅助数据,应用BP神经网络方法,将莽汉山林场作为研究区进行了遥感影像的分类研究。比较了BP神经网络分类与最大似然、简单和复杂非监督分类法之间的类型与数量精度。BP神经网络分类的总类型精度是70.5%,总数量精度为84.65%,KAPPA系数是0.6455。结果说明BP神经网络的分类质量优于其他方法,其总的类型精度与其他三种分类方法相比分别增加了10.5%、32%和33%,总的质量精度增加了5.3%。因此,辅以地理参考数据的BP神经网络分类可以作为一种有效的分类方法。
引用
收藏
页码:710 / 717
页数:8
相关论文
共 12 条
[1]  
Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA[J] . Philip A. Townsend,Stephen J. Walsh.Plant Ecology . 2001 (2)
[2]  
Artificial neural networks as a tool in ecological modelling, an introduction[J] . Sovan Lek,J.F. Guégan.Ecological Modelling . 1999 (2)
[3]  
Developing an empirical model of phytoplankton primary production: a neural network case study[J] . Michele Scardi,Lawrence W Harding.Ecological Modelling . 1999 (2)
[4]   Fuzzy mapping of tropical land cover along an environmental gradient from remotely sensed data with an artificial neural network [J].
Foody G.M. ;
Boyd D.S. .
Journal of Geographical Systems, 1999, 1 (1) :23-35
[5]   A technique for monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model [J].
Goodin, DG ;
Henebry, GM .
REMOTE SENSING OF ENVIRONMENT, 1997, 61 (02) :270-278
[6]  
On the relation between NDVI, fractional vegetation cover, and leaf area index[J] . Toby N. Carlson,David A. Ripley.Remote Sensing of Environment . 1997 (3)
[7]  
Artificial neural network approach for modelling and prediction of algal blooms[J] . Friedrich Recknagel,Mark French,Pia Harkonen,Ken-Ichi Yabunaka.Ecological Modelling . 1997 (1)
[8]   Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery [J].
Foody, GM ;
Lucas, RM ;
Curran, PJ ;
Honzak, M .
PLANT ECOLOGY, 1997, 131 (02) :143-154
[9]   Artificial neural networks as empirical models for estimating phytoplankton production [J].
Scardi, M .
MARINE ECOLOGY PROGRESS SERIES, 1996, 139 (1-3) :289-299
[10]   LAND-COVER CLASSIFICATION BY AN ARTIFICIAL NEURAL-NETWORK WITH ANCILLARY INFORMATION [J].
FOODY, GM .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SYSTEMS, 1995, 9 (05) :527-542