基于马氏距离度量的局部线性嵌入算法

被引:4
作者
张兴福 [1 ,2 ]
黄少滨 [1 ]
机构
[1] 哈尔滨工程大学计算机科学与技术学院
[2] 黑龙江省农垦经济研究所
关键词
局部线性嵌入; 流形学习; 降维; 图像识别;
D O I
10.16451/j.cnki.issn1003-6059.2012.02.014
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
局部线性嵌入算法(LLE)中常用欧氏距离度量样本间相似度.而对于图像等高维数据,欧氏距离不能准确体现样本间的相似程度.文中提出基于马氏距离度量的局部线性嵌入算法(MLLE).算法首先从现有样本中学习到一个马氏度量,然后在LLE算法的近邻选择、现有样本及新样本降维过程中用马氏度量作为相似性度量.将MLLE算法及其它典型的流形学习算法在ORL和USPS数据库上进行对比实验,结果表明MLLE算法具有良好的识别性能.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 9 条
  • [1] Two-dimensional supervised local similarity and diversity projection
    Gao, Quan-Xue
    Xu, Hui
    Li, Yi-Ying
    Xie, De-Yan
    [J]. PATTERN RECOGNITION, 2010, 43 (10) : 3359 - 3363
  • [2] Neighborhood linear embedding for intrinsic structure discovery
    Ge, Shuzhi Sam
    Guan, Feng
    Pan, Yaozhang
    Loh, Ai Poh
    [J]. MACHINE VISION AND APPLICATIONS, 2010, 21 (03) : 391 - 401
  • [3] Learning a Mahalanobis distance metric for data clustering and classification
    Xiang, Shiming
    Nie, Feiping
    Zhang, Changshui
    [J]. PATTERN RECOGNITION, 2008, 41 (12) : 3600 - 3612
  • [4] Palmprint recognition with improved two-dimensional locality preserving projections
    Pan, Xin
    Ruan, Qiu-Qi
    [J]. IMAGE AND VISION COMPUTING, 2008, 26 (09) : 1261 - 1268
  • [5] ISOLLE: LLE with geodesic distance[J] . Claudio Varini,Andreas Degenhard,Tim W. Nattkemper. Neurocomputing . 2006 (13)
  • [6] Incremental locally linear embedding
    Kouropteva, O
    Okun, O
    Pietikäinen, M
    [J]. PATTERN RECOGNITION, 2005, 38 (10) : 1764 - 1767
  • [7] Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment
    张振跃
    查宏远
    [J]. Journal of Shanghai University, 2004, (04) : 406 - 424
  • [8] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [9] Improving Nearest Neighbor Classification with Cam Weighted Distance .2 Zhou Changyin,Chen Yanqiu. Pattern Recognition . 2006