基于SVR-GA模型的浆态管流压力差的预测(英文)

被引:21
作者
S.K.Lahiri
K.C.Ghanta
机构
[1] DepartmentofChemicalEngineering,NIT,Durgapur,WestBengal,India
关键词
support vector regression; genetic algorithm; slurry pressure drop;
D O I
暂无
中图分类号
TQ02 [化工过程(物理过程及物理化学过程)];
学科分类号
081701 ; 081704 ;
摘要
This paper describes a robust support vector regression(SVR)methodology,which can offer superior performance for important process engineering problems.The method incorporates hybrid support vector regression and genetic algorithm technique(SVR-GA)for efficient tuning of SVR meta-parameters.The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow.A comparison with selected correlations in the literature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions,physical properties,and pipe diameters.
引用
收藏
页码:841 / 848
页数:8
相关论文
共 3 条
  • [1] Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation[J] . B.V Babu,K.K.N Sastry.Computers and Chemical Engineering . 1999 (3)
  • [2] Solids transport by laminar Newtonian flows
    Gillies, RG
    Hill, KB
    McKibben, MJ
    Shook, CA
    [J]. POWDER TECHNOLOGY, 1999, 104 (03) : 269 - 277
  • [3] The effect of particle shape on pipeline friction for newtonian slurries of fine particles. SCHAAN J,SUMNER J R,GILLIES G R. The Canadian Journal of Chemical Engineering . 2000