基于雾计算和强化学习的交通灯智能协同控制研究

被引:7
作者
安萌萌
樊秀梅
蔡含宇
机构
[1] 西安理工大学自动化与信息工程学院
关键词
十字路口; 交通灯; 雾计算; 强化学习; Q学习;
D O I
10.19734/j.issn.1001-3695.2018.08.0543
中图分类号
U491.54 []; TP181 [自动推理、机器学习];
学科分类号
0838 ;
摘要
针对路口交通拥堵现象,结合雾计算和强化学习理论,提出了一种FRTL(fog reinforcement traffic light)交通灯控制模型,该模型根据实时的交通流信息进行交通灯智能协同控制。雾节点将收集到的实时交通流信息上传到雾服务器,雾服务器在雾平台实现信息共享,雾平台结合处理后的共享数据和Q学习制定交通灯控制算法。算法利用检测到的实时交通数据计算出合适的交通灯配时方案,最终应用到交通灯上。仿真结果表明,与传统的分时段控制方式和主干道控制方式(ATL)相比,FRTL控制方法提高了路口的吞吐量,减少了车辆平均等待时间,达到了合理调控红绿灯时间、缓解交通拥堵的目标。
引用
收藏
页码:465 / 469
页数:5
相关论文
共 49 条
  • [1] Characterization of Network Traffic Processes Under Adaptive Traffic Control Systems[J] . Alessandra Pascale,Hoang Thanh Lam,Rahul Nair. &nbspTransportation Research Procedia . 2015
  • [2] Characterization of Network Traffic Processes Under Adaptive Traffic Control Systems[J] . Alessandra Pascale,Hoang Thanh Lam,Rahul Nair. &nbspTransportation Research Procedia . 2015
  • [3] Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework[J] . Mohamed A. Khamis,Walid Gomaa. &nbspEngineering Applications of Artificial Intelligence . 2014
  • [4] Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework[J] . Mohamed A. Khamis,Walid Gomaa. &nbspEngineering Applications of Artificial Intelligence . 2014
  • [5] An Overview of the Usage of Adaptive Signal Control System in the United States of America[J] . Zhao Yi,Tian Zong. &nbspApplied Mechanics and Materials . 2012 (178)
  • [6] An Overview of the Usage of Adaptive Signal Control System in the United States of America[J] . Zhao Yi,Tian Zong. &nbspApplied Mechanics and Materials . 2012 (178)
  • [7] Reinforcement learning-based multi-agent system for network traffic signal control. Arel, I.,Liu, C.,Urbanik, T.,Kohls, A.G. Intelligent Transport Systems, IET . 2010
  • [8] Reinforcement learning-based multi-agent system for network traffic signal control. Arel, I.,Liu, C.,Urbanik, T.,Kohls, A.G. Intelligent Transport Systems, IET . 2010
  • [9] Adaptive signal control for urban traffic network gridlock. LI Nan,ZHAO Guangzhou. 2016 UKACC 11th International Conference on Control(CONTROL) . 2016
  • [10] Adaptive signal control for urban traffic network gridlock. LI Nan,ZHAO Guangzhou. 2016 UKACC 11th International Conference on Control(CONTROL) . 2016