基于卷积神经网络的高光谱图像分类方法

被引:7
作者
路易 [1 ]
吴玲达 [2 ]
朱江 [1 ]
机构
[1] 装备学院研究生管理大队
[2] 装备学院复杂电子系统仿真实验室
关键词
卷积神经网络; 高光谱图像分类; 虚拟样本; 循环学习率; 动量批处理梯度下降;
D O I
10.16208/j.issn1000-7024.2018.09.025
中图分类号
TP751 [图像处理方法]; TP183 [人工神经网络与计算];
学科分类号
摘要
为解决在样本有限的情况下高光谱图像分类精度不高的问题,提出一种基于卷积神经网络的高光谱遥感图像分类方法。引入滤波、增加虚拟样本、标准化等预处理技术,使分类模型对地物样本种类和数量的敏感度降低;通过对梯度下降法和学习率计算方法进行优化,降低计算复杂度和计算时间;设计符合高光谱数据特点的网络结构,提高分类方法的泛化性。实验结果表明,与传统分类方法进行比较,该方法有较高的分类精度。
引用
收藏
页码:2836 / 2841
页数:6
相关论文
共 9 条
  • [1] Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. Romero A,Gatta C,Camps-Valls G. IEEE Transactions on Geoscience&Remote Sensing . 2015
  • [2] Deep Convolutional Neural Networks for Hyperspectral Image Classification[J] . Wei Hu,Yangyu Huang,Li Wei,Fan Zhang,Hengchao Li,Tianfu Wu. &nbspJournal of Sensors . 2015
  • [3] Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. Yuan, Qiangqiang,Zhang, Liangpei,Shen, Huanfeng. IEEE Transactions on Geoscience and Remote Sensing . 2012
  • [4] Deep convolutional networks with superpixel segmentation for hyperspectral image classification. Cao J,Chen Z,Wang B. IEEE Geoscience and Remote Sensing Letters . 2016
  • [5] Combining support vector machines and Markov random fields in an integrated framework for contextual image classification. MOSER G,SERPICO S B. IEEE Transactions on Geoscience and Remote Sensing . 2013
  • [6] Hyperspectral Image Classification Using Deep Pixel-pair Features. Li W,Wu G,Zhang F,et al. IEEE Transactions on Geoscience and Remote Sensing . 2017
  • [7] Modeling high dimensional frequency spectral data based on virtual sample generation technique. J.Tang,M.Y.Jia,Z.Liu. IEEE International Conference on Information and Automation . 2015
  • [8] A survey of virtual sample generation technology for face recognition. L.Li,Y.Peng,G.Qiu,Z.Sun,S.Liu. Artificial Intelligence . 2017
  • [9] Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. Chen Y S,Jiang H L,Li C Y,et al. IEEE Transactions on Geoscience and Remote Sensing . 2016