基于YOLO v4的复杂路口下人车混行检测算法研究

被引:3
作者
郭振宇 [1 ]
高国飞 [2 ]
机构
[1] 北方工业大学信息学院
[2] 北京城建设计发展集团股份有限公司
基金
国家重点研发计划;
关键词
YOLO v4; 人车混检; F-CSP网络;
D O I
暂无
中图分类号
TP18 [人工智能理论]; TP391.41 []; U495 [电子计算机在公路运输和公路工程中的应用];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 080203 ; 0838 ;
摘要
随着基于深度学习的目标检测算法研究越来越深入,其在智慧交通中的应用也越来越广泛。现有的人车混检算法面临着路口场景下车辆行驶角度多变、目标遮挡、人车重合的考验。针对现有问题,本文基于YOLO v4算法进行改进,优化YOLO v4的特征提取预测网络结构,设计加入F-CSP结构,提高网络特征提取和特征融合的能力,减少小目标特征的缺失。实验制作针对复杂路口环境下的车辆和行人数据集与coco数据集结合进行训练并测试。相比于YOLO v4算法,在复杂路口场景下,对遮挡严重和重合严重的行人和车辆检测准确率有所提升。
引用
收藏
页码:236 / 240
页数:5
相关论文
共 11 条
[1]  
Path Aggregation Network for Instance Segmentation[J] . Shu Liu,Lu Qi,Haifang Qin,Jianping Shi,Jiaya Jia. oRR . 2018
[2]  
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J] . Ren Shaoqing,He Kaiming,Girshick Ross,Sun Jian. EEE transactions on pattern analysis and machine intelligence . 2017 (6)
[3]  
CSPNET:A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN . Chien-Yao Wang,Hong-Yuan Mark Liao,I-Hau Yeh,Yueh-Hua Wu,Ping-Yang Chen,Jun-Wei Hsieh. . 2019
[4]  
Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression . Zhaohui Zheng,Ping Wang,Wei Liu,Jinze Li,Rongguang Ye,Dongwei Ren. . 2019
[5]  
YOLO v4:Optimal Speed and Accuracy of Object Detection . Chien-Yao Wang,Hong-Yuan Mark Liao. . 2020
[6]  
A Pedestrian Detection Method Based on YOLOv3 Model and Image Enhanced by Retinex . Qu H,Yuan T,Sheng Z,et al. 2018 11th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics(CISP-BMEI) . 2018
[7]  
Feature pyramid networks for object detection . Lin T Y,Dollar P,Girshick R,et al. IEEE conference on computer vision and pattern recognition . 2017
[8]  
Rich feature hierarchies for accurate object detection and semantic segmentation . Girshick R,Donahue J,Darrell T,et al. Computer Vision and Pattern Recognition (CVPR),2014 IEEE Conference on . 2014
[9]  
Fast r-cnn . Girshick R. Proceedings of the IEEE International Conference on Computer Vision . 2015
[10]  
SSD:Single shot multibox detector . Liu W,Anguelov D,Erhan D,et al. European Conference on Computer Vision . 2016