超声医学图像滤波算法研究进展

被引:11
作者
赵树魁
李德玉
汪天富
郑昌琼
Zheng Yi
机构
[1] 四川大学生物医学工程中心!成都
[2] Department of Electrical Engineering!Minnesota State University
[3] StCloud
[4] MN
[5] USA
关键词
超声医学图像; 图像滤波; 非线性自适应滤波;
D O I
暂无
中图分类号
R311 [医用数学];
学科分类号
1001 ;
摘要
主要讨论超声医学图像滤波算法的研究现状 ,几种主要的滤波方法 (多方位滤波方法、自适应权值调节滤波方法、自适应窗口选取滤波方法、两步法等 ) ,面临的问题及发展的方向。作者通过实践 ,将有关算法应用于超声医学图像的处理 ,给出了处理结果 ,进行了几种算法的比较分析
引用
收藏
页码:145 / 148+153 +153
页数:5
相关论文
共 12 条
[1]  
Some fundamental properties of speckle. Goodman JW. Journal of the Optical Society of America . 1976
[2]   一种基于数学形态学的图象多尺度分析方法的研究 [J].
吕铁英 ;
彭嘉雄 .
数据采集与处理, 1998, (02) :11-15
[3]   一种全方位多尺度形态滤波方法 [J].
赵春晖 ;
孙圣和 .
模式识别与人工智能, 1998, 11 (01) :101-106
[4]  
An adaptive speckle suppression filter for medical ultrasonic imaging. Mostafa Karaman,Alper M Kutay,Gozde Bozdagi. IEEE Transactions on Medical Imaging . 1995
[5]  
Hybrid neuro-fuzzy filter for impulse noise removal. Fabrizio Russo. Pattern Recognition . 1999
[6]  
A fast filtering algorithm for image enhancement. Haiguang Chen,Andrew Li,Leon Kaufman,et al. IEEE Transactions on Medical Imaging . 1994
[7]  
Biased motion-adaptive temporal filtering for speckle reduction in echocardiography. Evans AN,Nixon MS. IEEE Transactions on Medical Imaging . 1996
[8]  
Speckle reduction with edge preservation in medical ultrasonic images using a homogeneous region growing mean filter. Koo JI and Park SB. Ultrasonic Imaging . 1991
[9]  
Pattern recognition.[P]. DIEP THANH A;AVI-ITZHAK HADAR I;GARLAND HARRY T.EP0622750A2,1994-11-02
[10]  
A new efficient approach for the removal of impulse noise from highly corrupted images. Eduardo Abreu,Michael Lightstone,Mitra SK,et al. IEEE Transactions on Image Processing . 1996