多年平均气温空间化BP神经网络模型的模拟分析

被引:9
作者
张赛 [1 ,2 ]
廖顺宝 [1 ]
机构
[1] 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室
[2] 中国科学院研究生院
关键词
多年平均气温; 空间化; ANN; BP神经网络;
D O I
暂无
中图分类号
P423 [大气温度];
学科分类号
0706 ; 070601 ;
摘要
气温数据空间化是插补无站地区温度、使气温数据便于综合分析的重要技术手段。理想情况下,气温的空间化分布受经度、纬度和海拔高度的影响,呈现规律性的空间分布态势。但是,各种微观因子如坡度、坡向、地形起伏、地表覆被等的存在,在一定程度上扰乱并弱化了这种规律性的分布态势。本文基于Matlab平台,利用BP神经网络研究了多年平均气温数据空间化的新方法。结果表明,与传统的IDW插值、Kriging插值、样条插值和趋势面插值相比,BP神经网络的绝对误差仅为0.51℃,具有较高的空间化精度,同时它更加准确地反映了诸如阿尔泰山、天山、昆仑山、喜马拉雅山等山区低温带的气温分布规律。本研究不仅丰富了气温数据空间化的理论、技术和方法,为相关研究提供了重要的基础数据;而且也为降雨、蒸发等模型因果关系不十分明确的气候/气象要素的空间化提供了一定的参考和借鉴。
引用
收藏
页码:534 / 538
页数:5
相关论文
empty
未找到相关数据