为提高超声检测缺陷识别的正确率和泛化能力,提出一种基于小波包分解和顺序向前浮动搜索(SFFS)算法的时频最优特征提取方法.该方法结合了无监督和有监督特征提取方法的优点,局部利用样本的先验分类信息以期达到更好的识别效果.介绍上述特征提取方法中的相关理论,包括小波包变换、Fisher判据以及SFFS搜索算法.为了验证新方法的在缺陷识别方面的有效性,对石油套管上的4种典型缺陷进行识别实验.分别采用3种传统的特征提取方法,从时域、频域和小波包域提取特征用于对比实验,并采用支持向量机算法对上述不同途径获取的特征集进行识别.10组随机抽样的识别实验表明:采用小波包时频SFFS优选特征能够对上述缺陷进行有效识别,最高识别率达到93.3%,平均识别率达到89.5%.与上述3种传统的特征提取方法相比,该新方法识别率高、泛化性好,对训练样本选的选择敏感性小.