计算智能在媒体内容挖掘领域的前沿应用与新趋势

被引:2
作者
吴小坤
机构
[1] 华南理工大学新闻与传播学院
关键词
计算智能; 内容挖掘; 数据利用; 算法;
D O I
10.15937/j.cnki.issn1001-8263.2018.07.015
中图分类号
G206 [传播理论]; TP18 [人工智能理论];
学科分类号
050302 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
计算智能是人工智能发展的前沿领域,从底层技术上揭示其未来发展方向。其对媒体内容的挖掘应用主要体现在两个方面:其一是对网络上文本和图像内容,通过聚类、分类和深度学习等方法,捕捉自然语言和图像语言中的符号意义;其二是对不同内容源的数据处理,较为典型的如社交网络上的数据利用问题。本文通过对计算智能的方法特征和技术趋势进行归纳和分析,探讨计算智能在媒体内容挖掘中的前沿应用,从而为技术导向下的媒体未来走向提供参照。
引用
收藏
页码:106 / 112
页数:7
相关论文
共 19 条
[1]  
计算智能[M]. 吉林大学出版社 , 周春光, 2009
[2]  
人工智能方法与应用[M]. 华中科技大学出版社 , 尹朝庆, 2007
[3]  
Computational intelligence in big data. Jin Y,Hammer B. IEEE Computational Intelligence Magazine . 2014
[4]  
Mining Semantically Consistent Patterns for Cross-View Data. L. Zhang,Y. Zhao,Z. Zhu, et al. IEEE Transactions on Knowledge and Data Engineering . 2014
[5]  
Multi-Modal Event Topic Model for Social Event Analysis. Qian S,Zhang T,Xu C,et al. IEEE Transactions on Multimedia . 2016
[6]  
SubLex:Generating subjectivity lexicons using genetic algorithm for subjectivity classification of big social data. Keshavarz H,Abadeh M S. Conference on SwarmIntelligence and Evolutionary Computation . 2016
[7]  
Deep learning classification of photographic paper based on clustering by domain expert-s. A.G.Klein,P.Messier,A.L.Frost,D.Palzer,S.L.Wood. 2016 50th Asilomar Conference on Signals,Systems and Computers . 2016
[8]  
Multi-camera saliency. LUO Y,JIANG M,WONG Y,et al. IEEE Transactions on Pattern Analysis.&.Machine Intelligence . 2015
[9]  
Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks. C.Park,Y.Kim,G.Kim. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2017
[10]  
Substructural Regularization with Data-Sensitive Granularity for Sequence Transfer Learning. S.Sun,H.Liu,J.Meng,C.L.P.Chen,Y.Yang. IEEE Transactions on Neural Networks and Learning Systems . 2017