利用信息量留存的蚁群遗传算法

被引:11
作者
邵晓巍
邵长胜
赵长安
不详
机构
[1] 哈尔滨工业大学航天学院
[2] 哈尔滨工业大学航天学院 黑龙江哈尔滨
[3] 黑龙江哈尔滨
[4] 黑龙江哈尔滨
关键词
混合遗传算法; 蚁群算法; 信息量留存;
D O I
10.13195/j.cd.2004.10.108.shaoxw.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
提出一种结合蚁群算法中"信息量留存"思想的遗传算法.该算法将问题空间进行均匀分割,基于这些子空间选取初始种群,并定义每个子空间的初始信息量,遗传操作中根据信息量留存情况来控制个体选择.由于初始种群均匀地分散在解空间,降低了发生过早收敛的可能性;而采用蚁群算法中"信息量留存"的思想,可保证算法快速收敛到具有最优(次优)解的子空间,从而达到提高收敛速度的目的.
引用
收藏
页码:1187 / 1189+1193 +1193
页数:4
相关论文
共 9 条
  • [1] Reeves C R.A genetic algorithm for flowshop sequencing. Computers and Operations Research . 1995
  • [2] MichalewiczZ.GeneticAlgorithm+DataStructure=EvolutionPrograms. . 1994
  • [3] Wang Lei,Wu Qidi.Further example study on ant system algorithm based continuous space optimization. Proc of the World Congress on Intelligent Control and Automation . 2002
  • [4] Li Shouzhi,Li Minyan,Pan Yongxiang.Genetic annealing algorithms and its convergence analysis. Control Theory and Applications . 2002
  • [5] Yen J,Liao J C,Bogju L,et al.A Hybrid Approach to Modeling Metabolic Systems Using a Genetic Algorithm and Simplex Method. IEEE Transactions on Systems Man and Cybernetics . 1998
  • [6] WongKP,WongYW.Combinedgeneticalgorithm/simulatedannealing/fuzzysetapproachtoshort-termgenerationschedulingwithtake-or-payfuelcontract. IEEETransonPowerSystems . 1996
  • [7] Coloni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies. Proc 1st European Conf on Artificial Life . 1991
  • [8] Coloni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies. Proc 1st European Conf on Artificial Life . 1991
  • [9] Yiuwing Leung,Yuping Wang.An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation . 2001