惯性权重粒子群算法模型收敛性分析及参数选择

被引:32
作者
孙湘 [1 ]
周大为 [2 ]
张希望 [2 ]
机构
[1] 江苏大学附属医院信息科
[2] 江苏大学汽车与交通工程学院
关键词
粒子群算法; 动力系统稳定性理论; 惯性权重; 加速系数; 收敛性;
D O I
10.16208/j.issn1000-7024.2010.18.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
为提高粒子群算法的收敛性,基于动力系统的稳定性理论分析了带有惯性权重的粒子群算法模型的收敛性,提出了在算法模型收敛条件下惯性权重w和加速系数c的参数约束关系。使用4个测试函数对具有所提参数约束关系的惯性权重粒子群算法模型和典型参数取值惯性权重粒子群算法模型进行了对比仿真研究,实验结果表明,具有提出的参数约束关系的惯性权重粒子群算法模型在收敛性方面具有显著优越性。
引用
收藏
页码:4068 / 4071
页数:4
相关论文
共 11 条
[1]  
The Particle Swarm:Explosion,Stability and Convergence in a Multi-Dimensional Complex Space. Clerc M,Kennedy J. IEEE Transactions on Evolutionary Computation . 2002
[2]  
A cooperative approach to particle swarm optimization. Vanden Bergh F,Engelbrecht A P. IEEE Transactions on Evolutionary Computation . 2004
[3]  
Particle swarm optimization. Kennedy J,Eberhart RC. Proceedings of IEEE International Conference on Neural Networks . 1995
[4]  
Clan Particle Swarm Optimization. Danilo F Carvalho,J A Carmelo Bastos-Filho. 2008IEEE Congress on Evolutionary Computation(CEC) . 2008
[5]  
A modified particle swarm optimizer. Shi Y,Eberhart R C. Proceedings of the IEEE International Conference on Evolutio-nary Computation . 1997
[6]  
Detecting particle swarm optimization. Zhang Y N,Teng H F. Concurrency and Computation-Practice and Experience . 2009
[7]  
A particle swarm optimization with stagnationdetection and dispersion. Worasucheep C. Proceedings of IEEE Conference ofEvolutionary Computation . 2008
[8]  
An evolutionary dynamic population sizePSO implementation. Soudan B,Saad M. 3rd Information and CommunicationTechnologies:From Theory to Applications . 2008
[9]  
Chaotic dynamic characteristics inswarm intelligence. Liu H,Abraham A,Clerc M. Applied Soft Computing . 2007
[10]  
Multiswarms,exclusion,and anti-conver-gence in dynamics environments. Blackwell T,Jurgen B. IEEE Transactions on Evolutionary Computation . 2006