运用偏最小二乘法(PLS)和人工神经网络(ANN)方法分别建立了0.9 mm筛分风干黑土土壤碱解氮、速效磷和速效钾含量预测的近红外光谱(N IRS)分析模型。使用偏最小二乘算法建立的碱解氮、速效磷和速效钾校正模型的决定系数R2分别为0.9520、0.8714和0.7300,平均相对误差分别为3.42%、13.40%和7.40%。人工神经网络方法建立的碱解氮、速效磷和速效钾校正模型的决定系数分别为0.9563、0.9493和0.9522,相对误差分别为2.67%、6.48%和2.27%,测试集仿真的相对误差分别为5.44%、16.65%和7.87%。结果表明,人工神经网络方法所建立的校正模型均优于偏最小二乘法所建模型;用近红外光谱分析法预测土壤碱解氮含量是可行的,而速效磷、速效钾模型的测试集样品仿真的相对误差较大,其预测可行性还需做进一步研究。