基于粒子群优化算法的期权波动率估计

被引:2
作者
何光
龙宪军
机构
[1] 重庆工商大学数学与统计学院
关键词
粒子群优化算法; 波动率; 变异操作; 期权定价;
D O I
暂无
中图分类号
F830.9 [金融市场]; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
波动率是Black-Scholes公式中的一个重要参数,期权价格对它的变动非常敏感.本文首先介绍了Black-Scholes期权定价公式,分析了波动率对期权定价的重要性.然后,为了计算粒子位置和速度,本文根据全局最优位置的历史数据及变异操作,提出了一种基于全局最优位置修正的粒子群优化算法.最后,本文在数值实验中运用修正的粒子群优化算法获得了基于期货合约的欧式看涨期权公式中波动率的估计值,并通过实验结果比较表明该算法具有更好的收敛性.
引用
收藏
页码:925 / 928
页数:4
相关论文
共 15 条
  • [1] Black-Scholes option pricing via genetic algorithms
    Grace, BK
    [J]. APPLIED ECONOMICS LETTERS, 2000, 7 (02) : 129 - 132
  • [2] The calculation of implied variances from the Black–Scholes model: a?note. S. Manaster,G. Koehler. The Journal of Finance . 1982
  • [3] Real-world options:smile and residual risk. Bouchaud J P,Iori G,Sornette D. Physics . 1995
  • [4] Application of quantum behaved particle swarm optimization in parameter estimation of option pricing. Zhao X,Sun J,Xu W B. Symposium distributed computing and applications to business,engineering and science . 2010
  • [5] Theory of Rational option Pricing. Merton RC. The Bell Journal of Economics . 1973
  • [6] A discrete binary version of the particle swarm algorithm. Kennedy J,Eberhart R C. Proceedings of the IEEE International Conference on Systems,Man and Cybernetics . 1997
  • [7] Particle swarm optimization. Kennedy J,Eberhart RC. Proceedings of the 1995 IEEE International Conference on Neural Networks . 1995
  • [8] Variance-optimal hedging in discrete time. Schweizer,Martin. Mathematics of Operations Research . 1995
  • [9] Option pricing under incompleteness and stochastic volatility. Norbert Hofmann,Eckhard Platen,Martin Schweizer. Mathematica Finance . 1992
  • [10] Pricing Risky Options Simply. Erik Aurell,Sergei I. Simdyankin. International Journal of Theoretical and Applied Finance . 1998