一种求解混合非线性整数规划的支撑超平面方法

被引:4
作者
达林
查建中
机构
[1] 北京交通大学机械与电子控制工程学院
关键词
凸规划; 扩展切平面(ECP); 支撑超平面(SHP); 混合整数非线性规划(MINLP);
D O I
暂无
中图分类号
O221.4 [整数规划];
学科分类号
摘要
给出一种在可行域边界生成支撑超平面(Supporting Hyper Plane,SHP)的方法来求解凸混合整数非线性(Mixed Integer Nonlinear Programming,MINLP)问题.扩展切平面(Extended Cutting Plane,ECP)算法作为求解混合整数非线性规划的一种重要方法,在算法结构上简单,鲁棒性强,但是该算法收敛速度慢,特别是当被求解问题非线性程度比较高时.SHP算法在每次迭代过程中对可行域的估计比ECP算法更准确(更小),从而加快了算法的收敛速度.和ECP方法相比,SHP算法有效的提高了求解MINLP问题的效率,数值试验显示了该方法的有效性.
引用
收藏
页码:82 / 86+111 +111
页数:6
相关论文
共 10 条
[1]  
An extended cutting plane method for solving convex MINLP problems[J] . Tapio Westerlund,Frank Pettersson.Computers and Chemical Engineering . 1995
[2]   BRANCH AND BOUND EXPERIMENTS IN CONVEX NONLINEAR INTEGER PROGRAMMING [J].
GUPTA, OK ;
RAVINDRAN, A .
MANAGEMENT SCIENCE, 1985, 31 (12) :1533-1546
[3]  
pth Power Lagrangian Method for Integer Programming[J] . Duan Li,Douglas J. White.Annals of Operations Research . 2000 (1)
[4]  
Trivial integer programs unsolvable by branch-and-bound[J] . R. G. Jeroslow.Mathematical Programming . 1974 (1)
[5]   AN OUTER-APPROXIMATION ALGORITHM FOR A CLASS OF MIXED-INTEGER NONLINEAR PROGRAMS [J].
DURAN, MA ;
GROSSMANN, IE .
MATHEMATICAL PROGRAMMING, 1986, 36 (03) :307-339
[6]  
Solving mixed integer nonlinear programs by outer approximation[J] . Roger Fletcher,Sven Leyffer.Mathematical Programming . 1994 (1)
[7]   Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques [J].
Grossmann, Ignacio E. .
OPTIMIZATION AND ENGINEERING, 2002, 3 (03) :227-252
[8]   Integrating SQP and branch-and-bound for mixed integer nonlinear programming [J].
Leyffer, S .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 18 (03) :295-309
[9]  
Generalized Benders decomposition[J] . A. M. Geoffrion.Journal of Optimization Theory and Applications . 1972 (4)
[10]  
Mixed discrete constrained nonlinear programming via recursive quadratic programming. Cha J Z. State University of New York atBuffalo . 1987