基于BISQ高频极限方程的交错网格法数值模拟

被引:14
作者
杨宽德
杨顶辉
王书强
机构
[1] 清华大学数学科学系
关键词
BISQ方程; 波场模拟; 横向各向同性孔隙介质; Biot等价方程; 交错网格法;
D O I
10.13810/j.cnki.issn.1000-7210.2002.05.006
中图分类号
P631.4 [地震勘探];
学科分类号
摘要
杨宽德 ,杨顶辉 ,王书强 .基于 BISQ高频极限方程的交错网格法数值模拟 .石油地球物理勘探 ,2 0 0 2 ,37(5 ) :4 6 3~ 4 6 8   BISQ方程是反映含流体多孔隙介质中 Biot流动和喷射流动共同作用下地震波和声波传播的最新研究成果。本文从多孔隙横向各向同性介质的 BISQ方程的高频极限方程出发 ,利用交错网格方法对横向各向同性孔隙介质中波的传播进行了数值模拟。结果表明 ,弹性波在横向各向同性多孔隙介质中传播时存在快拟 P波、慢拟 P波、拟 SH波和拟 SV波 ,同时出现横波分裂、波面尖角等现象 ,从而验证了 BISQ理论的正确性 ,并为进一步应用、研究奠定了基础。
引用
收藏
页码:463 / 468
页数:6
相关论文
共 12 条
  • [1] Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Para J O. Geophysics . 2000
  • [2] The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms: theory and application. Parra J O. Geophysics . 1997
  • [3] Observation of a second bulk compressional wave in a porous media at ultrasonic frequencies. Plona T J. Applied Physics Letters . 1980
  • [4] Generalized theory of acoustic propagation in porous dissipative media. Biot M A. The Journal of The Acoustical Society of America . 1962
  • [5] Theory of propagation of elastic waves in a fluid-saturated porous solid: I Low-frequency range; Ⅱ Higher frequency range. Biot M A. The Journal of The Acoustical Society of America . 1956
  • [6] Causes and reduction of numerical artifacts in pseudo-spectral wavefield extrapolation. O。zdenvar T and McMechan G A. Geophysical Journal International . 1996
  • [7] Poroelastic wave equation including the Biot Squirt mechanism and the solidfluid coupling anisotropy. Yang D H and Zhang Z J. Wave Motion . 2002
  • [8] Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves[J] . Dinghui Yang,Zhongjie Zhang. &nbspChinese Science Bulletin . 2000 (23)
  • [9] P-SV wave propagation in heterogeneous media: velocity-stress finite difference method. Virieux J. Geophysics . 1986
  • [10] Mechanics of deformation and acoustic propagation in porous media. Biot M A. Journal of Applied Physics . 1962