自适应正则有参超分辨率图像盲恢复

被引:4
作者
袁小华
夏德深
机构
[1] 南京理工大学计算系教研室,南京理工大学计算系教研室南京,上海市农科院农业信息化工程技术中心,上海,南京
关键词
超分辨率图像盲恢复和增强; 自适应正则; 预处理共轭梯度算法;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
基于重建的超分辨率(SR)方法中,图像求解是典型的高维病态问题,需借助有效的正则来稳定求解。在Nguyen等人的正则有参超分辨率盲恢复框架(RPSR)基础上,引入基于图像局部光滑特征的正则处理,提出自适应正则的有参超分辨率方法(ARPSR),并从方便计算的角度,进一步提出了ARPSR的近似求解方法,即先将ARPSR问题,化为两个RPSR问题的带权组合,然后用RPSR框架估计图像模糊系统的自由参数和最优正则参数,用重排系统矩阵的方法构造预处理器,最后用预处理共轭梯度方法(PCG)求解超分辨率图像。算法分析和试验结果表明,ARPSR方法是对RPSR框架的进一步改进。
引用
收藏
页码:53 / 59
页数:7
相关论文
共 10 条
[1]  
Limits on super-resolution and how to break them. Baker S,Kanade T. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
[2]  
Numerical techniques for image super-resolution. Nguyen N. . 2000
[3]  
DigitalImageRestoration. AndrewsH,HuntB. . 1977
[4]  
Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. Elad M,Feuer A. IEEE Transactions on Image Processing . 1997
[5]  
Generalized cross-validation for large scale problems. Glub G H,Matt U V. Journal of Computational and Graphics . 1997
[6]  
Moore-penrose inverse of block circulant and block k-circulant matrices. Smith R L. Linear Algebra and Its Applications . 1977
[7]  
Bluridentificationbythemethodof generalizedcross-validation. ReevesSJ,MersereauR. IEEETransactionsonImageProcessing . 1992
[8]  
Efficient generalized crossvalidation with applications to parametric image restoration and resolution enhancement. Nguyen N,Milanfa P,Golub G H. IEEE Transactions on Image Processing . 2001
[9]  
Computationally efficient super-resolution image reconstruction algorithm. Nguyen N,Milanfa P,Golub G H. IEEE Transactions on Image Processing . 2001
[10]  
Houseimage. JansenM. Http://www.cs.kuleuven. ac.be/-maarten/image/house.tif . 2002