生物地理信息优化算法中迁移算子的改进

被引:7
作者
徐志丹 [1 ,2 ]
莫宏伟 [1 ]
机构
[1] 哈尔滨工程大学自动化学院
[2] 哈尔滨商业大学基础科学学院
关键词
生物地理信息算法(BBO); 多目标优化问题; Pareto最优解集;
D O I
10.16451/j.cnki.issn1003-6059.2012.03.018
中图分类号
TP301.6 [算法理论];
学科分类号
081202 ;
摘要
原生物地理信息优化算法主要通过迁移算子与变异算子实现群体的进化,常被应用于求解单目标优化问题.如果将原有的进化算子直接用于求解连续多目标优化问题,会严重影响群体的多样性.文中将原迁移算子进行改进,引入扰动因子,增强群体的多样性.并以此为基础,提出基于生物地理信息的多目标进化算法(BBMOEA).通过与原有迁移算子下的算法比较及各类型测试函数的实验,结果验证改进迁移算子对于求解多目标优化问题是有效可行的.同时将BBMOEA与经典算法SPEA2和NSGA-Ⅱ进行比较,结果表明BBMOEA所得Pareto解集在收敛的同时,具有较均匀的分布性.
引用
收藏
页码:544 / 549
页数:6
相关论文
共 3 条
[1]   基于进化规划的新型生物地理学优化算法研究 [J].
蔡之华 ;
龚文引 ;
LING CharlesX .
系统工程理论与实践, 2010, 30 (06) :1106-1112
[2]   进化多目标优化算法研究 [J].
公茂果 ;
焦李成 ;
杨咚咚 ;
马文萍 .
软件学报, 2009, 20 (02) :271-289
[3]   Multiobjective immune algorithm with nondominated neighbor-based selection [J].
Gong, Maoguo ;
Jiao, Licheng ;
Du, Haifeng ;
Bo, Liefeng .
EVOLUTIONARY COMPUTATION, 2008, 16 (02) :225-255