多重空间特征融合的手势识别

被引:4
作者
高喆
机构
[1] 复旦大学计算机科学技术学院
关键词
手势识别; 深度图像; 多重空间特征; 随机森林;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
手势识别是计算机视觉领域的一个重要课题,有着广泛的应用,如交互式游戏和手语识别等.随着深度传感器的面世,手势识别任务变得更为简单.近些年有大量的方法尝试在深度图像中提取特征,来作为某种手势的有效表达.但由于手势固有的灵活性和复杂性,现有算法在大型数据集上的识别效果依然不能令人满意.本文提出一种新的基于多重空间特征融合的方法来识别静态的手势深度图像,即对三维点云进行局部的主成分分析,并提取局部的梯度信息和局部点云的深度分布,这些信息有效的编码了手势的局部形状,本文把局部特征连接起来作为整个手势图像的特征,并通过随机森林分类器的分类结果对特征进行过滤,从而剔除对分类结果没有影响的特征.最后用过滤后的特征再次训练随机森林来识别手势.与当下流行的手势识别算法相比,本文的方法在两个大型手势数据集上有效的提高了识别率.
引用
收藏
页码:1577 / 1582
页数:6
相关论文
共 4 条
[1]   复杂背景下基于傅立叶描述子的手势识别 [J].
刘寅 ;
滕晓龙 ;
刘重庆 .
计算机仿真, 2005, (12) :158-161
[2]   基于Hausdorff距离的手势识别 [J].
张良国 ;
吴江琴 ;
高文 ;
姚鸿勋 .
中国图象图形学报, 2002, (11) :43-49
[3]  
Random Forests. [J] . Leo Breiman.&nbsp&nbspMachine Learning . 2001 (1)
[4]  
Histogram of 3D Facets:A characteristic descriptor for hand gesture recognition .2 Chenyang Zhang,Xiaodong Yang,Yingli Tian. IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) . 2013