主成分分析(principal component analysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,提出了分块PCA的人脸识别方法。分块PCA方法先对图像进行分块,对分块得到的子图像利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特例。在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4.4个百分点。