协同演化算法在聚类中的应用

被引:4
作者
董红斌 [1 ]
杨宝迪 [1 ]
刘佳媛 [2 ]
侯薇 [1 ]
机构
[1] 哈尔滨工程大学计算机科学与技术学院
[2] 哈尔滨工程大学信息与通信工程学院
基金
黑龙江省自然科学基金;
关键词
聚类; 模糊C均值(FCM); 遗传算法; 差分进化算法;
D O I
10.16451/j.cnki.issn1003-6059.2012.04.012
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
提出一种协同演化聚类算法,该算法使用改进的掩码方式动态决定聚类中心的数目.将种群划分成两个子种群,分别采用遗传算法和差分进化算法进行演化,遗传算法侧重于全局寻优,差分进化算法注重于局部搜索.在演化的过程中,利用不同的间隔迁移策略相互交换优良个体,使算法的全局探索能力和局部搜索能力得到均衡.通过性能测试、聚类中心数目和运行时间测试等实验证明该算法的优越性.
引用
收藏
页码:676 / 683
页数:8
相关论文
共 25 条
[1]  
A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Pakhira Malay K, Bandyopadhyay Sanghamitra, Maulik Ujjwal. Fuzzy Sets and Systems . 2005
[2]  
The Shell Process Control Workshop ProcessResearch :Industrial and Academic Prepectives. Prett,D.M.et al. Putterworths ,MA . 1987
[3]  
Automatic image pixel clustering with an improved differential evolution. Das S,Konar A. Applied Soft Computing . 2009
[4]  
A genetic algorithm that exchanges neighboring centers for k-means clustering. Laszlo M,Mukherjee S. Pattern Recognition . 2007
[5]  
Automatic fuzzy clustering using modified differential evolution for image classification. U Maulik,I Saha. IEEE Transactions on Geoscience and Remote Sensing . 2010
[6]  
Differential Evolution-A Practical Approach to Global Optimization. Storn R,Price K V,Lampinen J. Springer-Ver-lag . 2005
[7]  
Adaptive probabilities of crossover and mutation in genetic algorithms. Srinivas M, Patnaik L M. IEEE Transactions on Systems Man and Cybernetics . 1994
[8]  
Clustering with a genetically optimized approach. Hall L O, Ozyurt I B, Bezdek J C. IEEE Transactions on Evolutionary Computation . 1999
[9]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[10]  
Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J] . Rainer Storn,Kenneth Price. &nbspJournal of Global Optimization . 1997 (4)