基于SURF特征和Delaunay三角网格的图像匹配

被引:33
作者
闫自庚
蒋建国
郭丹
机构
[1] 合肥工业大学计算机与信息学院
关键词
SURF (Speeded up robust feature) 特征; Delaunay 三角网格; 点对; 特征匹配;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
图像特征匹配的核心是通过距离函数实现在高维矢量空间进行相似性检索.重点研究提取好的特征点并快速准确地找到查询点的近邻.首先,提取图像的多量、有区别且稳健的SURF(Speeded up robust feature)特征点,并将特征点凸包进行Delaunay剖分.然后,对Delaunay三角边抽样、聚类、量化并构建索引.通过票决算法,将点对匹配与否映射到矩阵中以解决距离度量没有利用数据集本身所蕴含的任何结构信息和搜索效率相对较低的问题.结合SURF算法和Delaunay三角网提出一种特征匹配的新方法,在标准图像集上的实验验证,在耗时基本相同的情况下,提取的特征点较多且正确匹配率较高.
引用
收藏
页码:1216 / 1222
页数:7
相关论文
共 5 条
[1]  
基于三角网格的图像表示方法研究.[D].万琳.华中科技大学.2009, 11
[2]  
Speeded-Up Robust Features (SURF).[J].Herbert Bay;Andreas Ess;Tinne Tuytelaars;Luc Van Gool.Computer Vision and Image Understanding.2007, 3
[3]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[4]   MLESAC: A new robust estimator with application to estimating image geometry [J].
Torr, PHS ;
Zisserman, A .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2000, 78 (01) :138-156
[5]  
图像局部不变性特征与描述.[M].王永明; 王贵锦; 编著.国防工业出版社.2010,