机器人轨迹跟踪的一种自适应神经鲁棒控制(英文)

被引:6
作者
牛玉刚
杨成梧
机构
[1] 南京理工大学动力学院室!南京
关键词
神经网络; 机器人; 不确定性; 鲁棒控制;
D O I
暂无
中图分类号
TP242 [机器人];
学科分类号
1111 ;
摘要
针对不确定机器人轨迹跟踪问题 ,提出了一种基于神经网络的自适应鲁棒控制 .该控制方案由一个PD反馈和一个神经动态补偿器组成 ,其特点是不需要系统不确定性上界的先验知识 ,而且避免了求解惯性矩阵逆 .通过利用一个RBF神经网络自适应学习系统不确定性的未知上界 ,从而可以有效克服系统不确定性的影响 ,保证机器人系统的输出跟踪误差渐近收敛于 0 .
引用
收藏
页码:924 / 928
页数:5
相关论文
共 8 条
[1]  
Gaussian networks for directive control. Sanner R M and Slotine J J E. IEEE Transactions on Neural Networks . 1992
[2]  
Local training of radial basis function network: toward solving the hidden unit problem. Holcomb T and Morari M. Proc. Amer.Contr. Conf[C], Boston . 1991
[3]  
Strict global lyapunov functions for mechanical system. Koditschek D E. Proc. IEEE Int. Conf. Robotics Automation[C],Raleigh, NC . 1987
[4]  
A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators. Man Z,Yu X H,Eshranghian K and Palaniswami M. Proc. IEEE Int. Conf. Neural Network[C], Pittsburgh . 1995
[5]  
A neural network feedforward adaptive controller for robots. Carelli R,Camacho E F and Pation D. IEEE Transactions on Systems Man and Cybernetics . 1995
[6]  
A neural network for the trajectory control of robotic manipulators with uncertainties. Nam B H,Lee S J and Lee S W. Proc. Amer.Contr. Conf[C], Seattle . 1997
[7]  
Introduction to Robotics Mechanics and Control. Craig J J. . 1989
[8]  
Nonlinear identification and control via neural networks. Sadegh N. ASME Meeting Hawaii on Control System with Dynamic Models[C], Hawaii . 1991