传统牛肉品质的检测方法耗时长,效率低,破坏样品,已不能满足现代化生产的需要。为了实现对牛肉嫩度品质的快速无损检测和评价,该文利用高光谱成像系统,以西门塔尔牛多个胴体的背最长肌部位为研究对象,采集56个有效样本的高光谱立体图像,研究无损评价牛肉样品的嫩度分布。通过提取样本的反射光谱信息,并利用逐步回归算法结合遗传算法(GA,genetic algorithm)筛选出牛肉剪切力值(WBSF,warner-bratzler shear force)的特征波段。利用主成分分析(PCA,principle component analysis)提取样品的3个主成分。基于选出的特征波段图像和提取的主成分,通过计算图像灰度共生矩阵求取每幅图像8个主要纹理特征参数,分别建立了基于支持向量机(SVM,support vector machine)和线性判别(LDA,linear discriminant analysis)法的嫩度等级判别模型。经分析比较,基于主成分纹理特征优于基于特征波段图像建立的预测模型,并且,线性判别模型识别准确率相比支持向量机模型较高。基于主成分纹理特征建立的线性判别模型预测集判别精度为94.44%。研究结果证明,基于高光谱图像纹理特征分析,可以建立牛肉的嫩度判别模型,对牛肉嫩度快速无损检测技术研究提供理论参考。