该文根据中国科学院禹城农业试验站2003-2006年冬小麦季的气象资料和大型称重式蒸渗仪观测资料,把实测作物系数作为作物因子指标,建立了以日最高温度、日净辐射、实测表层60cm土壤含水率、日序数和作物系数为输入因子,蒸渗仪实测蒸散量为输出因子的BP神经网络预测模型,神经网络拓扑结构为5-9-1,训练函数为Trainbr。检验结果表明冬小麦耗水量模型预测平均相对误差为13.1%,预测值和实测值的均方根误差为0.88mm,模型预测Nash-Sutcliffe效率指数为0.865,预测效果较好,可满足生产需要。