基于多松弛格子玻尔兹曼的弯道水流三维数值模拟

被引:6
作者
丁全林 [1 ,2 ]
王玲玲 [3 ]
汪德爟 [2 ]
方政 [1 ]
机构
[1] 河海大学力学与材料学院
[2] 河海大学浅水湖泊综合治理与资源开发教育部重点实验室
[3] 河海大学水利水电学院
基金
中央高校基本科研业务费专项资金资助;
关键词
多松弛格子玻尔兹曼; 流体; 弯道水流; 紊流模型;
D O I
10.14042/j.cnki.32.1309.2012.04.006
中图分类号
TV131.3 [水流];
学科分类号
0801 ; 080103 ; 080104 ; 081502 ;
摘要
为研究弯道水流现象并且拓展格子玻尔兹曼(Lattice Boltzmann Method,LBM)在水利工程领域的应用,建立了弯道水流的三维多松弛LBM演进模型,其中包括水流自由表面模拟、弯曲固壁边界处理以及紊流模型耦合求解等关键技术。应用该模型模拟研究了不同流量下U型弯道的水流状态,得到了水位、最大水深平均流速以及紊动能等参数的分布规律。分析和实践表明,该模型能较好地模拟三维弯道水流现象。
引用
收藏
页码:523 / 528
页数:6
相关论文
共 17 条
[1]  
Lattice Boltzmann Method for 3-D Flows with Curved Boundary. Mei R,Shyy W,Yu D, et al. Journal of Computational Physics . 2000
[2]  
Stability Analysis of lattice Boltzmann Methods. STERLING J D,CHEN S. Journal of Computational Physics . 1996
[3]   Relaxation approximations and kinetic models of fluid turbulence [J].
Succi, S ;
Chen, H ;
Orszag, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) :1-5
[4]  
Multiplerelaxation -time lattice boltzmann models in three dimensions. d‘Humieres D,Ginzburg I,Krafczyk M,et al. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences . 2002
[5]  
Lattice BGK models for Navier-Stokes equation. Qian YH,d’humieres D,Lallemand P. Europhysics Letters . 1992
[6]  
Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Ladd A J C. Journal of Fluid Mechanics . 1994
[7]  
Simulation of cavity flow by the lattice Boltzmann method. Hou S L,Zhou O S,Chen S Y,et al. Journal of Computational Physics . 1995
[8]  
Lattice Boltzmann based single phase method for free surface tracking of droplet motions. XING X.Q,BUTLER D.L,YANG C. International Journal for Numerical Methods in Fluids . 2007
[9]  
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. He X,Luo L S. Physical Review . 1997
[10]  
"Flow of water in bends of open channels". Rozowskii,I.L. English translation: Israel Progr. For Scientific Transl . 1961