基因组编辑技术应用于作物遗传改良的进展与挑战

被引:27
作者
王福军 [1 ,2 ]
赵开军 [1 ]
机构
[1] 中国农业科学院作物科学研究所
[2] 广东省农业科学院水稻研究所
基金
国家重点研发计划;
关键词
基因组编辑; 作物育种; 遗传改良; TALENs; CRISPR/Cas;
D O I
暂无
中图分类号
S33 [作物遗传育种与良种繁育];
学科分类号
071007 ; 090102 ;
摘要
基因组定点编辑(site-specific genome editing)是指在基因组水平上对生物DNA序列进行定点改造的遗传操作技术,其在基因功能解析、动植物遗传改良和新品种培育等方面具有重大的应用价值。基因组定点编辑工作原理是利用序列特异性核酸内切酶(sequence-specific nucleases,SSNs)在基因组靶定位置切割DNA双链,造成DNA双链断裂(DNA double-strand breaks,DSBs),并通过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homology-directed repair,HDR)的DNA修复途径在基因组特定位点造成靶标基因的碱基插入、缺失或DNA片段替换,从而实现基因组的定点改造。目前,已成功应用于作物遗传改良的SSNs主要包括锌指核酸酶(Zinc finger nucleases,ZFNs)、类转录激活因子效应物核酸酶(transcription activator-like effector nucleases,TALENs)、成簇的规律间隔的短回文重复序列及其相关系统(clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins,CRISPR/Cas system)。从发展态势看,基于CRISPR/Cas系统的基因组编辑技术必将成为作物遗传改良和分子设计育种的核心技术之一。论文简要概述了ZFNs、TALENs和CRISPR/Cas系统这3种基因组编辑的技术背景及工作原理;结合案例重点综述上述3种技术在作物产量、品质、抗病性、抗逆性改良及水稻雄性不育系创制上的研究进展;详细梳理基于CRISPR/Cas的植物基因组单碱基编辑系统和DNA-free植物基因组编辑系统的技术创新和应用;比较分析3种技术的优缺点,并提出基因组编辑技术应用于作物遗传改良的一般原则;介绍了美国和欧盟等对基因编辑技术及其产品安全监管和商业化应用的政策法规,及业界人士对基因编辑作物提出的监管框架协议;最后,针对基因编辑技术自身的技术优势和缺陷,讨论该技术应用于作物遗传改良和分子育种的机遇和挑战。
引用
收藏
页码:1 / 16
页数:16
相关论文
共 31 条
[1]  
Targeted mutagenesis in rice using CRISPR-Cpf1 system[J]. Xixun Hu,Chun Wang,Qing Liu,Yaping Fu,Kejian Wang.Journal of Genetics and Genomics. 2017(01)
[2]  
Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Rongfang Xu,Yachun Yang,Ruiying Qin,Hao Li,Chunhong Qiu,Li Li,Pengcheng Wei,Jianbo Yang.Journal of Genetics and Genomics. 2016(08)
[3]  
Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9[J]. Quanlin Li,Dabing Zhang,Mingjiao Chen,Wanqi Liang,Jiaojun Wei,Yiping Qi,Zheng Yuan.Journal of Genetics and Genomics. 2016(06)
[4]   Deletion of a target gene in Indica rice via CRISPR/Cas9 [J].
Wang, Ying ;
Geng, Lizhao ;
Yuan, Menglong ;
Wei, Juan ;
Jin, Chen ;
Li, Min ;
Yu, Kun ;
Zhang, Ya ;
Jin, Huaibing ;
Wang, Eric ;
Chai, Zhijian ;
Fu, Xiangdong ;
Li, Xianggan .
PLANT CELL REPORTS, 2017, 36 (08) :1333-1343
[5]   Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker [J].
Jia, Hongge ;
Zhang, Yunzeng ;
Orbovic, Vladimir ;
Xu, Jin ;
White, Frank F. ;
Jones, Jeffrey B. ;
Wang, Nian .
PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (07) :817-823
[6]  
Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET 14 ‐inducing TAL effectors[J] . Servane Blanvillain‐Baufumé,Maik Reschke,Montserrat Solé,Florence Auguy,Hinda Doucoure,Boris Szurek,Donaldo Meynard,Murielle Portefaix,Sébastien Cunnac,Emmanuel Guiderdoni,Jens Boch,Ralf Koebnik.Plant Biotechnology Journal . 2017 (3)
[7]   ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions [J].
Shi, Jinrui ;
Gao, Huirong ;
Wang, Hongyu ;
Lafitte, H. Renee ;
Archibald, Rayeann L. ;
Yang, Meizhu ;
Hakimi, Salim M. ;
Mo, Hua ;
Habben, Jeffrey E. .
PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (02) :207-216
[8]   The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine [J].
Go, D. E. ;
Stottmann, R. W. .
CURRENT MOLECULAR MEDICINE, 2016, 16 (04) :343-352
[9]   PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease [J].
Yang, Hui ;
Gao, Pu ;
Rajashankar, Kanagalaghatta R. ;
Patel, Dinshaw J. .
CELL, 2016, 167 (07) :1814-+
[10]   Use of designer nucleases for targeted gene and genome editing in plants [J].
Weeks, Donald P. ;
Spalding, Martin H. ;
Yang, Bing .
PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (02) :483-495