一种基于谱聚类的半监督聚类方法

被引:12
作者
司文武
钱沄涛
机构
[1] 浙江大学计算机科学与技术学院
[2] 浙江大学计算机科学与技术学院 浙江杭州
[3] 浙江杭州
关键词
半监督聚类; 谱聚类;
D O I
暂无
中图分类号
TP311.1 [程序设计];
学科分类号
081202 ; 0835 ;
摘要
半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。提出一种基于谱聚类的半监督聚类算法,其利用标签数据的信息,调整点与点之间的距离所形成的距离矩阵,而后基于被调整的距离矩阵进行谱聚类。实验表明,该算法较之于已提出的半监督聚类算法,获得了更好的聚类性能。
引用
收藏
页码:1347 / 1349
页数:3
相关论文
共 9 条
[1]  
Segmentation using eigenvectors: A Unifying view. WEISS Y. Proc. ICCV . 1999
[2]  
Sem i-supervised clustering by seeding. BASU S,BANERJEE A,MOONEY RJ. ICML . 2002
[3]  
Sem i-supervised clustering using genetic algorithms. DEM IR IZ A,BENNETT KP,EMBRECHTS MJ. Artificial Neural Networks in Engineering .
[4]  
Onspectralclustering:Analysisandanalgorithm. NGAY,JORDANMI,WEISSY. AdvancesinNeuralInformationProcessingSystems . 2001
[5]  
Integrating constraints and metric learning in sem i-supervise clustering. B ILENKO M,BASU S,MOONEY RJ. ICML . 2004
[6]  
D istance metric learning,with application to clustering with side-information. X ING EP,NG AY,JORDAN M I,et al. Advances in Neural Information Processing Systems 15 .
[7]  
D istance metric learning,with application to clustering with side-information. X ING EP,NG AY,JORDAN M I,et al. Advances in Neural Information Processing Systems 15 .
[8]  
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. KLEIN D,KAMVAR SD,MANNING C. ICML . 2002
[9]  
Constrained KMeans clustering with background knowledge. WAGSTAFF K,CARD IE C,ROGERS S,et al. ICML[C] . 2001