基于小波分解的MIMO系统辨识最优实验设计

被引:1
作者
龙图景
孙政顺
李春文
姜培刚
机构
[1] 清华大学自动化系,清华大学自动化系,清华大学自动化系,清华大学自动化系北京,北京,北京,北京
关键词
有关控制的辨识; 小波分析; 最优实验设计;
D O I
10.16383/j.aas.2003.06.024
中图分类号
TP273 [自动控制、自动控制系统];
学科分类号
080201 ; 0835 ;
摘要
提出了一种基于小波分解的MIMO系统辨识最优输入信号的设计方法 ,将小波的多分辨率分析应用于MIMO系统的最小二乘辨识中 ,并且与闭环系统的控制性能指标关联起来 ,从而得出一种最优实验的设计方法 .由于小波变换的多分辨特性和良好的去相关作用 (对有色噪声的白化作用 ) ,这种方法能获得比普通的系统辨识方法更好的结果 .仿真实验证明了这种方法的有效性
引用
收藏
页码:959 / 964
页数:6
相关论文
共 11 条
[1]  
LMI-based optimal design of test signals for control-relevant system identification. Jay H Lee,Yudi Samyudia. In: Proceedings of the American Control Conference, Chicago . 2000
[2]  
Control-relevant experiment design for multivariable systems described by expansions in orthonormal bases. Brian L Cooley,Jay H Lee. Automatica . 2001
[3]  
System identification with generalized orthonormal basis functions. Van Den Hof,Heuberger,Bokor J. Automatica . 1995
[4]  
Goodwin,G.C.,Payne,R.L. Dynamic system identification: experiment design and data analysis . 1977
[5]  
Wavelet-based frequency band weighting approach to control-relevant process identification. Wan Hai-Qing,Song Zhi-Huan,Li Ping. In: Proceedings of the American Control Conference, Chicago . 2000
[6]  
Wavelet-based modulation in control-relevant process identification. John F Carrier,George Stephanopoulos. American Institute of Chemical Engineers Journal . 1998
[7]  
Process identification using discrete wavelet transforms: Design of prefilters. Srinivas Palavajjhala,Rodolphe L Motard,Babu Joseph. American Institute of Chemical Engineers Journal . 1996
[8]  
A theory for multiresolution signal decomposition. Mallat S G. The Wavelet Representation IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
[9]  
Wavelet-based frequency band weighting approach for identirfication issue. Song Zhi-Huan,Wang Hai-Qing,Li Ping. Acta Automatica Sinica . 2001
[10]  
System Identification: Theory for the User(2nd Ed). Lennart Ljung. . 1999