基于INet的雷达图像杂波抑制和目标检测方法

被引:21
作者
牟效乾
陈小龙
关键
周伟
刘宁波
董云龙
机构
[1] 海军航空大学
关键词
雷达图像; 动目标检测; 杂波抑制; 融合网络; 帧间积累;
D O I
暂无
中图分类号
TN957.52 [数据、图像处理及录取];
学科分类号
摘要
强海杂波与海面目标的复杂特性使得海面目标回波微弱,有效的海杂波抑制和稳健快速的目标检测是雷达对海上目标探测需考虑的重要因素。然而,现有的海面目标检测算法对于复杂环境下的目标检测性能有限,环境和目标特性适应性差。该文设计了一种杂波抑制和目标检测融合网络(INet),通过层归一化-传递和连接方法提取关键目标特征,采用注意力网络抑制杂波和增强目标,构建跨阶段局部残差网络保证检测网络的轻量化和准确性。基于导航雷达在多种观测条件下采集的回波数据,构建了海面目标雷达图像数据集;通过模型的预训练和平面位置显示器(PPI)图像的帧间积累对INet进行了优化,得到了Optimized INet(O-INet)模型。经过多种天气条件下实测数据测试和验证,并与YOLOv3, YOLOv4,双参数CFAR和二维CA-CFAR对比后证明,所提方法在提高检测概率、降低虚警率和复杂条件下的强泛化能力有显著优势。
引用
收藏
页码:640 / 653
页数:14
相关论文
共 56 条
  • [1] Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform. YU Xiaohan,CHEN Xiaolong,HUANG Yong, et al. IEEE Geoscience and Remote Sensing Letters . 2020
  • [2] Detection of Targets in Non-Gaussian Sea Clutter. Trunk, G.V,George, S.F. Aerospace and Electronic Systems, IEEE Transactions on . 1970
  • [3] A target detection model based on improved Tiny-Yolov3 under the environment of mining truck. XIAO Dong,SHAN Feng,LI Ze, et al. IEEE Access . 2019
  • [4] Multi-target defect identification for railway track line based on image processing and improved YOLOv3 model. WEI Xiukun,WEI Dehua,SUO Da, et al. IEEE Access . 2020
  • [5] Detection of Targets in Non-Gaussian Sea Clutter. Trunk, G.V,George, S.F. Aerospace and Electronic Systems, IEEE Transactions on . 1970
  • [6] Real-time detection method for small traffic signs based on Yolov3. ZHANG Huibing,QIN Longfei,LI Jun, et al. IEEE Access . 2020
  • [7] MSARN:A deep neural network based on an adaptive recalibration mechanism for multiscale and arbitrary-oriented SAR ship detection. CHEN Chen,HE Chuan,HU Changhua, et al. IEEE Access . 2019
  • [8] Layer normalization. Ba J L,Kiros J R,Hinton G E. https://arxiv.org/abs/1607.06450 . 2016
  • [9] Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function. CHEN Xiaolong,YU Xiaohan,HUANG Yong, et al. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing . 2020
  • [10] Fast and refined processing of radar maneuvering target based on hierarchical detection via sparse fractional representation. CHEN Xiaolong,GUAN Jian,WANG Guoqing, et al. IEEE Access . 2019