基于改进粒子群优化的并行极限学习机

被引:11
作者
李婉华 [1 ,2 ,3 ]
陈羽中 [1 ,2 ,3 ]
郭昆 [1 ,2 ,3 ]
郭松荣 [1 ,2 ,3 ]
刘漳辉 [1 ,2 ]
机构
[1] 福州大学数学与计算机科学学院
[2] 福州大学福建省网络计算与智能信息处理重点实验室
[3] 海西政务大数据应用协同创新中心
关键词
电力负荷预测; 极限学习机(ELM); 粒子群优化; 变异算子; 并行计算;
D O I
10.16451/j.cnki.issn1003-6059.201609009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM).基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据.
引用
收藏
页码:840 / 849
页数:10
相关论文
共 8 条
  • [1] Time series forecasting with a neuro-fuzzy modeling scheme.[J].Hung-Wen Peng;Shen-Fu Wu;Chia-Ching Wei;Shie-Jue Lee.Applied Soft Computing.2015,
  • [2] Parallel sampling from big data with uncertainty distribution.[J].Qing He;Haocheng Wang;Fuzhen Zhuang;Tianfeng Shang;Zhongzhi Shi.Fuzzy Sets and Systems.2015,
  • [3] Recurrent Multiplicative Neuron Model Artificial Neural Network for Non-linear Time Series Forecasting.[J].Erol Egrioglu;Ufuk Yolcu;Cagdas Hakan Aladag;Eren Bas.Procedia - Social and Behavioral Sciences.2014, C
  • [4] A review on applications of ANN and SVM for building electrical energy consumption forecasting.[J].A.S. Ahmad;M.Y. Hassan;M.P. Abdullah;H.A. Rahman;F. Hussin;H. Abdullah;R. Saidur.Renewable and Sustainable Energy Reviews.2014,
  • [5] Short Term Load Forecasting Based on PCA and LS-SVM.[J].Jun Sun;Cai Hui Song;Xiao Hua Xiao;Xia Ming Jin;Ji Heng Ni.Advanced Materials Research.2013, 756
  • [6] Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks
    Xia, Changhao
    Wang, Jian
    McMenemy, Karen
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2010, 32 (07) : 743 - 750
  • [7] Extreme learning machine: Theory and applications.[J].Guang-Bin Huang;Qin-Yu Zhu;Chee-Kheong Siew.Neurocomputing.2006, 1
  • [8] Evolutionary extreme learning machine
    Zhu, QY
    Qin, AK
    Suganthan, PN
    Huang, GB
    [J]. PATTERN RECOGNITION, 2005, 38 (10) : 1759 - 1763