应变梯度理论进展

被引:39
作者
陈少华
王自强
机构
[1] 中国科学院力学研究所LNM
[2] 中国科学院力学研究所LNM 北京
[3] 北京
关键词
微米尺度; 尺寸效应; 应变梯度;
D O I
暂无
中图分类号
O346 [强度理论];
学科分类号
080102 ;
摘要
应变梯度理论是近10年来为解释材料在微米尺度下的尺寸效应现象而发展起来的一种新理论.首先综述了应变梯度理论近年的发展及其对材料力学行为研究方面的进展.其次主要介绍了不含高阶应力的一类应变梯度理论及其应用;最后对应变梯度理论的发展做了展望.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 45 条
[1]   MODE Ⅰ AND MODE Ⅱ CRACK TIP ASYMPTOTIC FIELDS WITH STRAIN GRADIENT EFFECTS [J].
陈少华 ;
王自强 .
Acta Mechanica Sinica, 2001, 17 (03) :269-280
[2]  
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES[J]. 魏悦广.Acta Mechanica Sinica. 2001(01)
[3]  
Theoretical and experimental researches of size effect in micro-indentation test[J]. 魏悦广 ,白以龙 ,王学峥 ,武晓雷.Science in China,Ser.A. 2001(01)
[4]   MODE Ⅰ CRACK TIP FIELD WITH STRAIN GRADIENT EFFECTS [J].
Chen Shaohua Wang Tzuchiang LNMInstitute of MechanicsChinese Academy of SciencesBeijing China .
ActaMechanicaSolidaSinica, 2000, 13 (04) :290-298
[5]  
固体本构关系[M]. 清华大学出版社 , 黄克智, 1999
[6]   Size dependent strengthening in particle reinforced aluminium [J].
Kouzeli, M ;
Mortensen, A .
ACTA MATERIALIA, 2002, 50 (01) :39-51
[7]  
Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity[J] . Z. Xue,Y. Huang,M. Li.Acta Materialia . 2002 (1)
[8]   Finite element solutions for plane strain mode I crack with strain gradient effects [J].
Chen, SH ;
Wang, TC .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (05) :1241-1257
[9]   A new deformation theory with strain gradient effects [J].
Chen, SH ;
Wang, TC .
INTERNATIONAL JOURNAL OF PLASTICITY, 2002, 18 (08) :971-995
[10]   Interface crack problems with strain gradient effects [J].
Chen, SH ;
Wang, TC .
INTERNATIONAL JOURNAL OF FRACTURE, 2002, 117 (01) :25-37