基于深度强化学习的计步方法

被引:4
作者
彭琛
韩立新
机构
[1] 河海大学计算机与信息学院
关键词
计步器; 深度强化学习; 均值穿越波峰波谷检测法;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对计步软件使用中用户行为不定,容易产生各种噪声以及传统算法中参数不能持续优化的问题,本文提出基于深度强化学习的计步方法。将噪声判别及步数统计作为智能体的动作,在步数统计中改进波峰检测法,提出均值穿越波峰波谷检测法。利用循环神经网络保存内部状态,将用户对计步器计步好坏的反馈作为奖励信号,指导参数持续优化。实验结果表明,该方法在采集设备放置于不同位置并且有噪声时,噪声识别率为0.9151,计步误差率为0.0623,有较高的精度以及较强的抗干扰能力。
引用
收藏
页码:63 / 68
页数:6
相关论文
共 24 条
[1]  
Deep learning in neural networks: An overview[J] . Jürgen Schmidhuber. &nbspNeural Networks . 2014
[2]  
Learning Hand-Eye Coordination for Robotic Grasping with Large-Scale Data Collection. LEVINE S,PASTOR P,KRIZHEVSKY A,et al. International Journal of Robotics Research . 2016
[3]  
End-to-end training of deep visuomotor policies. Levine S,Finn C,Darrell T,et al. Journal of Machine Learning Research . 2015
[4]  
Autonomous footstep counting and traveled distance calculation by mobile devices incorporating camera and accelerometer data. LU Y T,VELIPASALAR S. IEEE Sensors Journal . 2017
[5]  
Walk detection and step counting on unconstrained smartphones. BRAJDIC A,HARLE R. The International Joint Conference on Pervasive and ubiquitous computing . 2013
[6]  
Target-driven visual navigation in indoor scenes using deep rein forcement learning. Zhu Yuke,MOTTAGHI R,KOLVE E,et al. IEEE International Conference on Robotics&Automation,ICRA . 2017
[7]  
ERSP:An energy-efficient real-time smartphone pedometer. OSHIN T O,POSLAD S. IEEE International Conference on Systems,Man,and Cybernetics (SMC) . 2013
[8]  
Self-Adaptive Step Counting on Smartphones under Unrestricted Stepping Modes. Tang Z,Guo Y,Chen X. Computer Software and Applications Conference . 2016
[9]  
Step count and classification using sensor information fusion. ANACLETO R,FIGUEIREDO L,ALMEIDA A,et al. Ambient Intelligence-Software and Applications . 2015
[10]  
A step counting algorithm for smartphnone users:Design and implementation. PAN M S,LIN H W. Sensors Journal . 2015