区间直觉模糊信息的集成方法及其在决策中的应用

被引:339
作者
徐泽水
机构
[1] 清华大学经济管理学院
基金
中国博士后科学基金; 国家杰出青年科学基金;
关键词
区间直觉模糊数; 运算法则; 集成算子; 决策;
D O I
10.13195/j.cd.2007.02.97.xuzsh.020
中图分类号
C934 [决策学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
对区间直觉模糊信息的集成方法进行了研究.定义了区间直觉模糊数的一些运算法则,并基于这些运算法则,给出区间直觉模糊数的加权算术和加权几何集成算子.定义了区间直觉模糊数的得分函数和精确函数,进而给出了区间直觉模糊数的一种简单的排序方法.最后提供了一种基于区间直觉模糊信息的决策途径,并进行了实例分析.
引用
收藏
页码:215 / 219
页数:5
相关论文
共 11 条
[1]  
Intuitionistic fuzzy sets. Atanassov K T. Fuzzy Sets and Systems . 1986
[2]  
Correlation of intuitionistic fuzzysets by centroid method. Hung W L,Wu J W. Journal of Information Science . 2002
[3]  
On the relationship betweensome extensions of fuzzy set theory. Deschrijver G,Kerre E E. Fuzzy Sets and Systems . 2003
[4]  
Topology of interval-valuedintuitionistic fuzzy sets. Mondal T K,Samanta S K. Fuzzy Sets and Systems . 2001
[5]  
Correlation of interval-valuedintuitionistic fuzzy sets. Bustince H,Burillo P. Fuzzy Sets and Systems . 1995
[6]  
Vague sets. Gau W L,Buehrer D J. IEEE Trans onSystems,Man,and Cybernetics . 1993
[7]  
Lecture Notes in Computer Science[C]. The First International Conference on Web-Age Information Management,1600
[8]  
Interval-valued intuitionisticfuzzy sets. Atanassov K,Gargov G. Fuzzy Sets and Systems . 1989
[9]  
Vague sets are intuitionistic fuzzysets. Bustince H,Burillo P. Fuzzy Sets and Systems . 1996
[10]  
Operators over interval-valuedintuitionistic fuzzy sets. Atanassov K. Fuzzy Sets and Systems . 1994