利用特征加权进行基于小波变换的纹理分类

被引:15
作者
吴高洪
章毓晋
林行刚
机构
[1] 清华大学电子工程系
关键词
纹理分析; 纹理分类; 小波变换; 特征提取;
D O I
暂无
中图分类号
TP391.4 [模式识别与装置];
学科分类号
0811 ; 081101 ; 081104 ; 1405 ;
摘要
本文提出了一种利用特征加权进行基于小波变换的纹理分类方法。本方法选用Daubechies正交小波,采用标准的金字塔结构小波变换,将小波变换各个频带输出的l1范数作为纹理分类的特征,并根据特征本身的离散程度对其进行加权,最后,采用最小距离分类器进行分类。对近千例测试样本的分类实验表明,本文提出的算法与无特征加权算法相比,性能有明显的提高。
引用
收藏
页码:262 / 267
页数:6
相关论文
共 11 条
[1]  
Texture analysis using Gabor wavelets. Naghdy G,Wang J,Ogunbona P. Proceedings of SPIE on Human Vision and Electronic Imaging . 1996
[2]  
Textures: A Photographic Album for Artists and Designer. Brodatz P. . 1966
[3]  
Statistical and structural approaches to texture. Haralick RM. Proceedings of Tricomm . 1979
[4]  
Texture classification and segmentation using wavelet frames. Michael Unser. IEEE Transactions on Image Processing . 1995
[5]  
Texture classification by wavelet packet signatures. Laine A,Fan J. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1993
[6]  
A review of recent texture segmentation and feature extraction techniques. T R Reed,J M Hans du Buf. Computer Vision . 1993
[7]  
Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. R. Porter,N. Canagarajah. IEE Vision Image Signal Processing . 1997
[8]  
Texture analysis and classification with tree-structured wavelet transform. Chang T,Kuo CCJ. IEEE Transactions on Image Processing . 1993
[9]  
Orthogonal bases of compactly supported wavelets. Daubechies I. Communications of the ACM . 1988
[10]  
Theory of multiresolution signal decomposition: the wavelet representation. Mallat S A. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989