关于树的代数连通度的Fiedler不等式的新证明(英文)

被引:3
作者
范益政
机构
[1] 南京师范大学数学系江苏南京安徽大学数学系,安徽合肥
关键词
树; Laplace矩阵; 代数连通度;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
设T为含n个顶点的树,L(T)为其Laplace矩阵.L(T)的次小特征值a(T)称为T的代数连通度.Fiedler给出如下关于a(T)的界的经典结论. a(Pn)≤a(T)≤a(Sn),其中Pn,Sn分别为含有n个顶点的路和星.Merris和Mass独立地证明了:a(T)=a(Sn)当且仅当T=Sn.通过重新组合由Fiedler向量所赋予的顶点的值,本文给出上述不等式的新证明,并证明了:a(T)=a(Pn)当且仅当T=Pn.
引用
收藏
页码:379 / 383
页数:5
相关论文
共 9 条
[1]  
A bound on algebraic connectivity of a graph in terms of the number of cutpoints. Kirkland S. Linear and Multilinear Algebra . 2000
[2]  
Perron components and algebraic conncctivity for weighted graphs. Kirkland S,Fallat S. Linear and Multilinear Algebra . 1998
[3]  
Note on the algebraic connectivity of a graph.J. Univ. Sci. Thechnol. Li Jiongsheng,Fan Yizheng. China . 2002
[4]  
Algebraic connectivity of tree. Grone R,Merris R. Czechoslovak Mathematical Journal . 1987
[5]  
Characteristic vertices of trees. Merris R. Linear and Multilinear Algebra . 1987
[6]  
Laplacian graph eigenvectors. Merris R. Linear Algebra and Its Applications . 1998
[7]  
Laplacian matrices of graphs: a survey. Merris R. Linear Algebra and Its Applications . 1998
[8]  
A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Fiedler M. Czechoslovak Mathematical Journal . 1975
[9]  
Algebraic connectivity of graphs. Fiedler M. Czechoslovak Mathematical Journal . 1973