信息几何及其应用

被引:11
作者
孙华飞 [1 ]
彭林玉 [1 ]
张真宁 [2 ]
机构
[1] 北京理工大学数学系
[2] 中国科学院数学与系统科学研究院
关键词
信息几何; Fisher信息阵; 对偶联络; Kullback散度;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
本文介绍了信息几何的基本内容和最新的一些研究进展,特别是信息几何的理论在神经网络、热力学系统、控制系统以及Birkhoff系统中的应用.
引用
收藏
页码:257 / 269
页数:13
相关论文
共 31 条
[1]  
Geometric structures of stable state feedback systems. Ohara A,Kitamori T. IEEE Transactions on Auto- matic Control . 1993
[2]  
Defining the curvature of a statistical problem (with application to second-order efficiency). Efron B. The Annals of Statistics . 1975
[3]  
Differential Geometrical Methods in Statistics. Amari S. Springer Lecture Notes in statistics . 1985
[4]  
Gradient systems in view of information geometry. Akio Fujiwara and Shun-ichi Amari. Physica D Nonlinear Phenomena . 1995
[5]  
Information geometry and phase transitions. Portesi M,Plastino A,Pennini F. Int J Modern Phys B . 2006
[6]  
Relations between a parametrization of stabilizing state feedback gains and eigenvalue locations. Ohara A,Nakazumi S,Suda N. Systems and Control Letters . 1991
[7]  
Differential geometry of a parametric family of invertible linear systems—Riemannian metric, dual affine connections, and divergence[J] . Shun-ichi Amari. &nbspMathematical Systems Theory . 1987 (1)
[8]   Iterative Approximation of Statistical Distributions and Relation to Information Geometry [J].
C. T. J. Dodson ;
H. Wang .
Statistical Inference for Stochastic Processes, 2001, 4 (3) :307-318
[9]  
Information geometry and its application in physics. Wu L.P. . 2009
[10]  
Information and accuracy attainable in the estimation of statistical parameters. Rao C.R. Bull.Calcutta. Math.Soc . 1945