基于加权最小二乘法的最优适应控制器

被引:10
作者
姜睿 [1 ]
罗贵明 [2 ]
机构
[1] 清华大学计算机科学与技术系 
[2] 清华大学软件学院 
关键词
WLS算法; “一步超前”最优适应控制器; 闭环全局稳定;
D O I
10.16383/j.aas.2006.01.022
中图分类号
TM571.6 [特殊控制器];
学科分类号
摘要
普通的最小二乘算法LS,并不能保证它的收敛性,而加权的最小二乘算法WLS,却有很好的收敛性,采用这种算法进行随机系统的辨识,能够保证算法所得的参数收敛于某一个向量,而且这种算法在很多方面具有同普通最小二乘算法一样的性质,采用这种算法对随机系统进行适应控制,能够保证系统是闭环全局稳定的,而且这种适应控制还能收敛于“一步超前”最优控制.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 10 条
[1]  
Optimal adaptive control of linear quadratic Gaussion systems. Kumar P R. The SIAM Journal on Control and Optimization . 1983
[2]  
Self-convergence of weighed least-squares with applications to stochastic adaptive control. Guo L. IEEE Transactions on Automatic Control . 1996
[3]  
The Astron-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers. Guo L,Chen H F. IEEE Transactions on Automatic Control . 1991
[4]  
Adaptive implementation of one-step-ahead optimal control via input matching. Johnson C R,J R,Tse E. IEEE Transactions on Automatic Control . 1978
[5]  
Optimal adaptive LOG control for systems with finite state process parameters. Caines P E,Chen H F. IEEE Transactions on Automatic Control . 1985
[6]  
Near supermartingales for convergence analysis of recursive identification and adaptive control schemes. Landau I D. International Journal of Control . 1982
[7]  
The adaptive LOG problem-Part I. Hijab O B. IEEE Transactions on Automatic Control . 1983
[8]  
Adaptive control with the stochastic approximation algorithm,geometry and convergence. Becker A H,Kumar P R,Wei C Z. IEEE Transactions on Automatic Control . 1985
[9]  
Global convergence for adaptive one-step-ahead optimal controllers based on input matching. Goodwin G C,Johnson C R,J R,Sin KS. IEEE Transactions on Automatic Control . 1981
[10]  
Optimal adaptive controllers based on LS algorithms. Luo G M. Acta Automatica Sinica . 1996