基于核路径算法的支持向量回归机参数选择

被引:1
作者
杨慧中
王芳
机构
[1] 江南大学通信与控制工程学院
关键词
支持向量回归机(SVR); 参数选择; 核路径算法; 软测量;
D O I
10.14107/j.cnki.kzgc.2009.01.010
中图分类号
TP181 [自动推理、机器学习];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
参数选择是支持向量机研究领域的重要问题。针对核参数的选择,提出一种基于二分法的核参数解路径算法。由于解为核参数的非线性光滑函数,该算法随着参数的更新,可以在已有参数得出的解的基础上通过更新公式进行推导计算,从而求得当前参数所对应的解,其目标函数的极值所对应的参数值即为最优参数解。该算法可以快速地求得最优参数。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该算法的可行性和有效性。
引用
收藏
页码:23 / 26+87 +87
页数:5
相关论文
共 2 条
[1]   基于粒子群优化算法的支持向量机参数选择及其应用 [J].
邵信光 ;
杨慧中 ;
陈刚 .
控制理论与应用, 2006, (05) :740-743+748
[2]   Choosing Multiple Parameters for Support Vector Machines [J].
Olivier Chapelle ;
Vladimir Vapnik ;
Olivier Bousquet ;
Sayan Mukherjee .
Machine Learning, 2002, 46 :131-159