深度学习在设备故障预测与健康管理中的应用

被引:78
作者
陈志强 [1 ,2 ]
陈旭东 [2 ]
Jos Valente de Olivira [3 ]
李川 [4 ,3 ]
机构
[1] 重庆工商大学检测控制集成系统工程实验室
[2] 重庆工商大学人工智能学院
[3] 葡萄牙阿尔加维大学CEOT中心
[4] 重庆工商大学国家智能制造服务国际科技合作基地
基金
国家重点研发计划;
关键词
深度学习; 故障预测与健康管理(PHM); 故障诊断; 剩余寿命预测;
D O I
10.19650/j.cnki.cjsi.J1905122
中图分类号
TH17 [机械运行与维修]; TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
在智能制造背景下,大数据驱动的设备故障预测与健康管理日益受到各界重视。深度学习能够在层次结构的特征提取过程中发现更多的隐藏知识,在领域自适应方面具有良好的数据适应性,近年来逐渐成为设备故障预测与健康管理的研究热点,并在设备故障诊断和预测中得到了广泛的应用。通过系统回顾近年来深度学习在设备故障预测与健康管理中应用,总结、分类和解释关于这一热点主题的主要文献,讨论了各种体系结构和相关理论。在此基础上,阐述了深度学习在设备故障诊断和预测方面所取得的主要成果、面临的挑战、以及未来的发展趋势,为设备故障预测与健康管理领域选择、设计或实现深度学习架构,提供明确的方向。
引用
收藏
页码:206 / 226
页数:21
相关论文
共 66 条
  • [1] Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process.[J].Jinglong Chen;Hongjie Jing;Yuanhong Chang;Qian Liu.Reliability Engineering and System Safety.2019,
  • [2] An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings.[J].Bin Yang;Yaguo Lei;Feng Jia;Saibo Xing.Mechanical Systems and Signal Processing.2019,
  • [3] Generative adversarial networks for data augmentation in machine fault diagnosis.[J].Siyu Shao;Pu Wang;Ruqiang Yan.Computers in Industry.2019,
  • [4] Dynamic condition monitoring for 3D printers by using error fusion of multiple sparse auto-encoders.[J].Shaohui Zhang;Zhenzhong Sun;Jianyu Long;Chuan Li;Yun Bai.Computers in Industry.2019,
  • [5] Ensemble deep learning-based fault diagnosis of rotor bearing systems.[J].Sai Ma;Fulei Chu.Computers in Industry.2019,
  • [6] An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems.[J].Te Han;Chao Liu;Linjiang Wu;Soumik Sarkar;Dongxiang Jiang.Mechanical Systems and Signal Processing.2019,
  • [7] A deep learning driven method for fault classification and degradation assessment in mechanical equipment.[J].Zhe Li;Yi Wang;Kesheng Wang.Computers in Industry.2019,
  • [8] Deep learning and its applications to machine health monitoring.[J].Rui Zhao;Ruqiang Yan;Zhenghua Chen;Kezhi Mao;Peng Wang;Robert X. Gao.Mechanical Systems and Signal Processing.2019,
  • [9] A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults.[J].Te Han;Chao Liu;Wenguang Yang;Dongxiang Jiang.Knowledge-Based Systems.2018,
  • [10] Multi-Layer domain adaptation method for rolling bearing fault diagnosis.[J].Xiang Li;Wei Zhang;Qian Ding;Jian-Qiao Sun.Signal Processing.2019,