一种基于紧密度的半监督文本分类方法

被引:11
作者
郑海清
林琛
牛军钰
机构
[1] 复旦大学计算机科学与工程系
关键词
计算机应用; 中文信息处理; 文本分类; 半监督机器学习; 支持向量机; 紧密度;
D O I
暂无
中图分类号
TP391.1 [文字信息处理];
学科分类号
081203 ; 0835 ;
摘要
自动的文本分类已经成为一个重要的研究课题。在实际的应用情况下,很多训练语料都只有一个数目有限的正例集合,同时语料中的正例和未标注文档在数量上的分布通常也是不均衡的。因此这种文本分类任务有着不同于传统的文本分类任务的特点,传统的文本分类器如果直接应用到这类问题上,也难以取得令人满意的效果。因此,本文提出了一种基于紧密度衡量的方法来解决这一类问题。由于没有标注出来的负例文档,所以,本文先提取出一些可信的负例,然后再根据紧密度衡量对提取出的负例集合进行扩展,进而得到包含正负例的训练集合,从而提高分类器的性能。该方法不需要借助特别的外部知识库来对特征提取,因此能够比较好的应用到各个不同的分类环境中。在TREC’05(国际文本检索会议)的基因项目的文本分类任务语料上的实验表明,该算法在解决半监督文本分类问题中取得了优异的成绩。
引用
收藏
页码:54 / 60
页数:7
相关论文
共 2 条
[1]   独立于语种的文本分类方法 [J].
黄萱菁 ;
吴立德 ;
石崎洋之 ;
徐国伟 .
中文信息学报, 2000, (06) :1-7
[2]   Text Classification from Labeled and Unlabeled Documents using EM [J].
Kamal Nigam ;
Andrew Kachites Mccallum ;
Sebastian Thrun ;
Tom Mitchell .
Machine Learning, 2000, 39 :103-134