神经机器翻译前沿综述

被引:36
作者
冯洋 [1 ,2 ]
邵晨泽 [1 ,2 ]
机构
[1] 中国科学院计算技术研究所智能信息处理重点实验室
[2] 中国科学院大学
基金
国家重点研发计划;
关键词
神经机器翻译; 模型训练; 同声传译; 多模态机器翻译; 非自回归机器翻译; 篇章翻译; 领域自适应; 多语言翻译;
D O I
暂无
中图分类号
TP391.2 [翻译机];
学科分类号
摘要
机器翻译是指通过计算机将源语言句子翻译到与之语义等价的目标语言句子的过程,是自然语言处理领域的一个重要研究方向。神经机器翻译仅需使用神经网络就能实现从源语言到目标语言的端到端翻译,目前已成为机器翻译研究的主流方向。该文选取了近期神经机器翻译的几个主要研究领域,包括同声传译、多模态机器翻译、非自回归模型、篇章翻译、领域自适应、多语言翻译和模型训练,并对这些领域的前沿研究进展做简要介绍。
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条
  • [1] Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning[J] . Ronald J. Williams.Machine Learning . 1992 (3)
  • [2] A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
    Williams, Ronald J.
    Zipser, David
    [J]. NEURAL COMPUTATION, 1989, 1 (02) : 270 - 280
  • [3] Fast structured decoding for sequence models .2 Sun Z,Li Z,Wang H,et al. Procedings of Advances in Neural Information Processing Systems . 2019
  • [4] Training neural machine translation using word embedding-based loss .2 Chousa K,Sudoh K,Nakamura S. . 2018
  • [5] Bi-directional differentiable input reconstruction for low-resource neural machine translation .2 Niu X,Xu W,Carpuat M. Proceedings of the 2019Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies . 2019
  • [6] Modeling coherence for discourse neural machine translation .2 Xiong H,He Z,Wu H,et al. Proceedings of the AAAI Conference on Artificial Intelligence . 2019
  • [7] Contextual parameter generation for universal neural machine translation .2 Platanios E A,SachanM,Neubig G,et al. Proceedings of the 2018Conference on Empirical Methods in Natural Language Processing . 2018
  • [8] Fast decoding in sequence models using discrete latent variables .2 Kaiser L,Bengio S,Roy A,et al. Proceedings of the 35th International Conference on Machine Learning . 2018
  • [9] Discourse-aware neural rewards for coherent text generation .2 Bosselut A,Celikyilmaz A,He X,et al. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies . 2018
  • [10] Deterministic non-autoregressive neural sequence modeling by iterative refinement .2 Lee J,Mansimov E,Cho K. Proceedings of the 2018Conference on Empirical Methods in Natural Language Processing . 2018