大规模知识图谱补全技术的研究进展

被引:25
作者
王硕 [1 ,2 ]
杜志娟 [1 ]
孟小峰 [1 ]
机构
[1] 中国人民大学信息学院
[2] 河北大学机器学习与计算智能重点实验室
基金
国家重点研发计划;
关键词
知识图谱; 知识库补全; 概念补全; 实例补全;
D O I
暂无
中图分类号
TP391.1 [文字信息处理]; G353.1 [情报资料的分析和研究];
学科分类号
081203 ; 0835 ; 1205 ;
摘要
随着谷歌知识图谱、DBpedia、微软Concept Graph、YAGO等众多知识图谱的不断出现,根据RDF来构建的知识表达体系越来越为人们所熟知.利用RDF三元组表达形式成为人们对现实世界中知识的基本描述方式,由于其结构简单、逻辑清晰,所以易于理解和实现,但也因为如此,当其面对现实中无比繁杂的知识和很多常识时,往往也无法做到对知识的认识面面俱到,知识图谱的构建过程注定会使其中包含的知识不具有完整性,即知识库无法包含全部的已知知识.此时知识库补全技术在应对此种情形时就显得尤为重要,任何现有的知识图谱都需要通过补全来不断完善知识本身,甚至可以推理出新的知识.本文从知识图谱构建过程出发,将知识图谱补全问题分为概念补全和实例补全两个层次:(1)概念补全层次主要针对实体类型补全问题,按照基于描述逻辑的逻辑推理机制、基于传统机器学习的类型推理机制和基于表示学习的类型推理机制等3个发展阶段展开描述;(2)实例补全层次又可以分为RDF三元组补全和新实例发现两个方面,本文主要针对RDF三元组补全问题沿着统计关系学习、基于随机游走的概率学习和知识表示学习等发展阶段来阐述实体补全或关系补全的方法.通过对以上大规模知识图谱补全技术研究历程、发展现状和最新进展的回顾与探讨,最后提出了未来该技术需要应对的挑战和相关方向的发展前景.
引用
收藏
页码:551 / 575
页数:25
相关论文
共 17 条
[1]  
Advanced graph model for tainted variable tracking[J]. MA Chao,YAN Dong,WANG YuPing,HU ShiMin.Science China(Information Sciences). 2013(11)
[2]  
Establishment of a function embodiment knowledge base for supporting service design[J]. NEMOTO Yutaro,AKASAKA Fumiya,CHIBA Ryosuke,SHIMOMURA Yoshiki.Science China(Information Sciences). 2012(05)
[3]  
A programmable approach to revising knowledge bases[J]. LUAN Shangmin1, DAI Guozhong1 & LI Wei2 1. Institute of Software, Chinese Academy of Sciences, Beijing 100080, China;2. Department of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China.Science in China(Series F:Information Sciences). 2005(06)
[4]  
Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach[J] . Shuo Yang,Mohammed Korayem,Khalifeh AlJadda,Trey Grainger,Sriraam Natarajan.Knowledge-Based Systems . 2017
[5]  
Towards a language-independent solution: Knowledge base completion by searching the Web and deriving language pattern[J] . Lidong Bing,Zhiming Zhang,Wai Lam,William W. Cohen.Knowledge-Based Systems . 2017
[6]  
Link prediction in social networks: the state-of-the-art[J] . Peng Wang,BaoWen Xu,YuRong Wu,XiaoYu Zhou.Science China Information Sciences . 2015 (1)
[7]  
A semantic matching energy function for learning with multi-relational data[J] . Antoine Bordes,Xavier Glorot,Jason Weston,Yoshua Bengio.Machine Learning . 2014 (2)
[8]   Modelling relational statistics with Bayes Nets [J].
Schulte, Oliver ;
Khosravi, Hassan ;
Kirkpatrick, Arthur E. ;
Gao, Tianxiang ;
Zhu, Yuke .
MACHINE LEARNING, 2014, 94 (01) :105-125
[9]  
YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia[J] . Johannes Hoffart,Fabian M. Suchanek,Klaus Berberich,Gerhard Weikum.Artificial Intelligence . 2013
[10]   Statistical relational learning of trust [J].
Rettinger, Achim ;
Nickles, Matthias ;
Tresp, Volker .
MACHINE LEARNING, 2011, 82 (02) :191-209