人工智能在医学影像中的研究与应用

被引:36
作者
韩冬 [1 ]
李其花 [2 ]
蔡巍 [3 ]
夏雨薇 [2 ]
宁佳 [1 ]
黄峰 [1 ]
机构
[1] 沈阳东软医疗系统有限公司
[2] 慧影医疗科技(北京)有限公司
[3] 东软集团股份有限公司
基金
北京市自然科学基金;
关键词
人工智能; 医学影像; 成像方法; 图像处理与分析; 自然语言处理;
D O I
暂无
中图分类号
R445 [影像诊断学]; TP18 [人工智能理论];
学科分类号
100207 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
近年来,人工智能成为学术界和工业界的研究热点,并已经成功应用于医疗健康等领域。着重介绍了人工智能在医学影像领域最新的研究与应用进展,包括智能成像设备、智能图像处理与分析、影像组学、医学影像与自然语言处理的结合等前沿方向。分析了研究和发展从源头入手的全链条人工智能技术的重要性和可行性,阐述了学术界和工业界在这一重要方向上的创新性工作。同时指出,人工智能在医学影像领域中的研究尚处于起步阶段,人工智能与医学影像的结合将成为国际上长期的研究热点。
引用
收藏
页码:39 / 67
页数:29
相关论文
共 12 条
[1]  
Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J] . Nathaniel M. Braman,Maryam Etesami,Prateek Prasanna,Christina Dubchuk,Hannah Gilmore,Pallavi Tiwari,Donna Plecha,Anant Madabhushi.Breast Cancer Research . 2017 (1)
[2]   A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome [J].
Vargas, Hebert Alberto ;
Veeraraghavan, Harini ;
Micco, Maura ;
Nougaret, Stephanie ;
Lakhman, Yulia ;
Meier, Andreas A. ;
Sosa, Ramon ;
Soslow, Robert A. ;
Levine, Douglas A. ;
Weigelt, Britta ;
Aghajanian, Carol ;
Hricak, Hedvig ;
Deasy, Joseph ;
Snyder, Alexandra ;
Sala, Evis .
EUROPEAN RADIOLOGY, 2017, 27 (09) :3991-4001
[3]   Origins of lymphatic and distant metastases in human colorectal cancer [J].
Naxerova, Kamila ;
Reiter, Johannes G. ;
Brachtel, Elena ;
Lennerz, Jochen K. ;
van de Wetering, Marc ;
Rowan, Andrew ;
Cai, Tianxi ;
Clevers, Hans ;
Swanton, Charles ;
Nowak, Martin A. ;
Elledge, Stephen J. ;
Jain, Rakesh K. .
SCIENCE, 2017, 357 (6346) :55-60
[4]  
Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors[J] . Jinzhong Yang,Lifei Zhang,Xenia J. Fave,David V. Fried,Francesco C. Stingo,Chaan S. Ng,Laurence E. Court.Computerized Medical Imaging and Graphics . 2016
[5]  
State-Space Model with Deep Learning for Functional Dynamics Estimation in Resting-State fMRI[J] . Heung-Il Suk,Chong-Yaw Wee,Seong-Whan Lee,Dinggang Shen.NeuroImage . 2016
[6]   A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities [J].
Vallieres, M. ;
Freeman, C. R. ;
Skamene, S. R. ;
El Naqa, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (14) :5471-5496
[7]  
Radiomics: the process and the challenges[J] . Virendra Kumar,Yuhua Gu,Satrajit Basu,Anders Berglund,Steven A. Eschrich,Matthew B. Schabath,Kenneth Forster,Hugo J.W.L. Aerts,Andre Dekker,David Fenstermacher,Dmitry B. Goldgof,Lawrence O. Hall,Philippe Lambin,Yoganand Balagurunathan,Robert A. Gatenby,Robert J. Gillies.Magnetic Resonance Imaging . 2012 (9)
[8]  
Spine detection in CT and MR using iterated marginal space learning[J] . B. Michael Kelm,Michael Wels,S. Kevin Zhou,Sascha Seifert,Michael Suehling,Yefeng Zheng,Dorin Comaniciu.Medical Image Analysis . 2012
[9]  
Radiomics: Extracting more information from medical images using advanced feature analysis[J] . Philippe Lambin,Emmanuel Rios-Velazquez,Ralph Leijenaar,Sara Carvalho,Ruud G.P.M. van Stiphout,Patrick Granton,Catharina M.L. Zegers,Robert Gillies,Ronald Boellard,André Dekker,Hugo J.W.L. Aerts.European Journal of Cancer . 2011 (4)
[10]  
Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance[J] . Maciej A. Mazurowski,Piotr A. Habas,Jacek M. Zurada,Joseph Y. Lo,Jay A. Baker,Georgia D. Tourassi.Neural Networks . 2007 (2)