气-液-固三相并流体系的混沌识别

被引:9
作者
顾丽莉
石炎福
余华瑞
机构
[1] 四川大学化学工程系!成都,四川大学化学工程系!成都,四川大学化学工程系!成都
关键词
气液固三相流; 重构相空间; Poincare截面; 确定性混沌分析;
D O I
10.15961/j.jsuese.2000.02.012
中图分类号
TQ021.1 [流体力学过程及原理];
学科分类号
081701 ; 081704 ;
摘要
通过重构相空间、Poincare截面、分维、Kolmogorov熵和Lyapunov指数谱等混沌分析方法对气 -液 -固三相并流向上流动系统的压力波动信号进行了定性和定量研究 ,研究表明 :此类系统具有非线性混沌现象 ;计算结果显示 ,系统普遍存在 2~ 3个分维 ,其中低频大尺度波动对应的分维反映全局动力学行为 ,其余两个反映局部性质
引用
收藏
页码:44 / 47
页数:4
相关论文
共 9 条
[1]  
Determining Lyapunov exponents from a time series. Wolf A,et al. Physica D Nonlinear Phenomena . 1985
[2]  
Measurement of the Lyapunov spectrum from a chaotic time series. Sano M,Sawada Y. Physical Review Letters . 1985
[3]  
Lyapunov exponents from time series. Eckmann J P. Physical Review A Atomic Molecular and Optical Physics . 1986
[4]  
Geometry from a time series. Packard N H et al. Physical Review Letters . 1980
[5]  
Ergodic theory of chaos and strange attractors. Eckmann J-P,Ruelle D. Reviews of Modern Physics . 1985
[6]  
The use of fractal techniques for flow regime identification. Franca F. International Journal of Multiphase Flow . 1991
[7]  
Fractal characteristics of gas-solids flow in a circulating fluidized bed. Bai D. Powder Technology . 1997
[8]  
Characterization of strange attracors. Grassberger P,Procaccia I. Physical Review Letters . 1983
[9]  
Estimation of the Kolmogorov entropy from a chaotic signal. Grassberger P,Proccaccia I. Physical Review A Atomic Molecular and Optical Physics . 1983