生物医学数据分析中的深度学习方法应用

被引:18
作者
李渊 [1 ]
骆志刚 [1 ]
管乃洋 [1 ]
尹晓尧 [1 ]
王兵 [2 ]
伯晓晨 [3 ]
李非 [3 ]
机构
[1] 国防科学技术大学计算机学院软件研究所
[2] 中国人民解放军部队
[3] 军事医学科学院放射与辐射医学研究所
关键词
深度学习; 高通量组学; 临床医学; 数据挖掘;
D O I
10.16476/j.pibb.2015.0339
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
生物医学数据的积累速度史无前例,为生物医学研究带来机遇的同时,也让传统数据分析技术面临巨大挑战.本文综述了深度学习方法应用在生物医学数据分析中的最新研究进展.首先阐述了深度学习方法,列举深度学习方法的主要实现模型,随后总结了目前生物医学数据分析中的深度学习方法应用情况,分析了在数据处理、模型构建和训练方法等方面共有问题的解决方法,最后给出了深度学习方法应用于生物医学数据分析时可能存在的问题及建议.
引用
收藏
页码:472 / 483
页数:12
相关论文
共 12 条
[1]   Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment [J].
Ithapu, Vamsi K. ;
Singh, Vikas ;
Okonkwo, Ozioma C. ;
Chappell, Richard J. ;
Dowling, N. Maritza ;
Johnson, Sterling C. .
ALZHEIMERS & DEMENTIA, 2015, 11 (12) :1489-1499
[2]   Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach [J].
Liang, Muxuan ;
Li, Zhizhong ;
Chen, Ting ;
Zeng, Jianyang .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) :928-937
[3]  
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation[J] . Wenlu Zhang,Rongjian Li,Houtao Deng,Li Wang,Weili Lin,Shuiwang Ji,Dinggang Shen.NeuroImage . 2015
[4]   A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction [J].
Spencer, Matt ;
Eickholt, Jesse ;
Cheng, Jianlin .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (01) :103-112
[5]   Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network [J].
Lyons, James ;
Dehzangi, Abdollah ;
Heffernan, Rhys ;
Sharma, Alok ;
Paliwal, Kuldip ;
Sattar, Abdul ;
Zhou, Yaoqi ;
Yang, Yuedong .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (28) :2040-2046
[6]  
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J] . Heung-Il Suk,Seong-Whan Lee,Dinggang Shen.NeuroImage . 2014
[7]   The NIH Roadmap Epigenomics Program data resource [J].
Chadwick, Lisa Helbling .
EPIGENOMICS, 2012, 4 (03) :317-324
[8]  
Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement[J] . D F Wulsin,J R Gupta,R Mani,J A Blanco,B Litt.Journal of Neural Engineering . 2011 (3)
[9]  
The impact of next-generation sequencing technology on genetics[J] . Elaine R. Mardis.Trends in Genetics . 2007 (3)
[10]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554